Download A Quadric Surface Model of Vacuum Tubes for Virtual Analog Applications Despite the prevalence of modern audio technology, vacuum tube amplifiers continue to play a vital role in the music industry. For this reason, over the years, many different digital techniques have been introduced for accomplishing their emulation. In this paper, we propose a novel quadric surface model for tube simulations able to overcome the Cardarilli model in terms of efficiency whilst retaining comparable accuracy when grid current is negligible. After showing the model capability to well outline tubes starting from measurement data, we perform an efficiency comparison by implementing the considered tube models as nonlinear 3-port elements in the Wave Digital domain. We do this by taking into account the typical common-cathode gain stage employed in vacuum tube guitar amplifiers. The proposed model turns out to be characterized by a speedup of 4.6× with respect to the Cardarilli model, proving thus to be promising for real-time Virtual Analog applications.
Download Perceptual Evaluation and Genre-specific Training of Deep Neural Network Models of a High-gain Guitar Amplifier Modelling of analogue devices via deep neural networks (DNNs) has gained popularity recently, but their performance is usually measured using accuracy measures alone. This paper aims to assess the performance of DNN models of a high-gain vacuum-tube guitar amplifier using additional subjective measures, including preference and realism. Furthermore, the paper explores how the performance changes when genre-specific training data is used. In five listening tests, subjects rated models of a popular high-gain guitar amplifier, the Peavey 6505, in terms of preference, realism and perceptual accuracy. Two DNN models were used: a long short-term memory recurrent neural network (LSTM-RNN) and a WaveNet-based convolutional neural network (CNN). The LSTMRNN model was shown to be more accurate when trained with genre-specific data, to the extent that it could not be distinguished from the real amplifier in ABX tests. Despite minor perceptual inaccuracies, subjects found all models to be as realistic as the target in MUSHRA-like experiments, and there was no evidence to suggest that the real amplifier was preferred to any of the models in a mix. Finally, it was observed that a low-gain excerpt was more difficult to emulate, and was therefore useful to reveal differences between the models.
Download Neural Grey-Box Guitar Amplifier Modelling with Limited Data This paper combines recurrent neural networks (RNNs) with the discretised Kirchhoff nodal analysis (DK-method) to create a grey-box guitar amplifier model. Both the objective and subjective results suggest that the proposed model is able to outperform a baseline black-box RNN model in the task of modelling a guitar amplifier, including realistically recreating the behaviour of the amplifier equaliser circuit, whilst requiring significantly less training data. Furthermore, we adapt the linear part of the DK-method in a deep learning scenario to derive multiple state-space filters simultaneously. We frequency sample the filter transfer functions in parallel and perform frequency domain filtering to considerably reduce the required training times compared to recursive state-space filtering. This study shows that it is a powerful idea to separately model the linear and nonlinear parts of a guitar amplifier using supervised learning.
Download A General Use Circuit for Audio Signal Distortion Exploiting Any Non-Linear Electron Device In this paper, we propose the use of the transimpedance amplifier configuration as a simple generic circuit for electron device-based audio distortion. The goal is to take advantage of the non-linearities in the transfer curves of any device, such as diode, JFET, MOSFET, and control the level and type of harmonic distortion only through bias voltages and signal amplitude. The case of a nMOSFET is taken as a case study, revealing a rich dependence of generated harmonics on the region of operation (linear to saturation), and from weak to strong inversion. A continuous and analytical Lambert-W based model was used for simulations of harmonic distortion, which were verified through measurements.
Download Fully Conditioned and Low-Latency Black-Box Modeling of Analog Compression Neural networks have been found suitable for virtual analog modeling applications. Several analog audio effects have been successfully modeled with deep learning techniques, using low-latency and conditioned architectures suitable for real-world applications. Challenges remain with effects presenting more complex responses, such as nonlinear and time-varying input-output relationships. This paper proposes a deep-learning model for the analog compression effect. The architecture we introduce is fully conditioned by the device control parameters and it works on small audio segments, allowing low-latency real-time implementations. The architecture is used to model the CL 1B analog optical compressor, showing an overall high accuracy and ability to capture the different attack and release compression profiles. The proposed architecture’ ability to model audio compression behaviors is also verified using datasets from other compressors. Limitations remain with heavy compression scenarios determined by the conditioning parameters.
Download Explicit Vector Wave Digital Filter Modeling of Circuits with a Single Bipolar Junction Transistor The recently developed extension of Wave Digital Filters based on vector wave variables has broadened the class of circuits with linear two-port elements that can be modeled in a modular and explicit fashion in the Wave Digital (WD) domain. In this paper, we apply the vector definition of wave variables to nonlinear twoport elements. In particular, we present two vector WD models of a Bipolar Junction Transistor (BJT) using characteristic equations derived from an extended Ebers-Moll model. One, implicit, is based on a modified Newton-Raphson method; the other, explicit, is based on a neural network trained in the WD domain and it is shown to allow fully explicit implementation of circuits with a single BJT, which can be executed in real time.
Download Neural Modeling of Magnetic Tape Recorders The sound of magnetic recording media, such as open-reel and cassette tape recorders, is still sought after by today’s sound practitioners due to the imperfections embedded in the physics of the magnetic recording process. This paper proposes a method for digitally emulating this character using neural networks. The signal chain of the proposed system consists of three main components: the hysteretic nonlinearity and filtering jointly produced by the magnetic recording process as well as the record and playback amplifiers, the fluctuating delay originating from the tape transport, and the combined additive noise component from various electromagnetic origins. In our approach, the hysteretic nonlinear block is modeled using a recurrent neural network, while the delay trajectories and the noise component are generated using separate diffusion models, which employ U-net deep convolutional neural networks. According to the conducted objective evaluation, the proposed architecture faithfully captures the character of the magnetic tape recorder. The results of this study can be used to construct virtual replicas of vintage sound recording devices with applications in music production and audio antiquing tasks.
Download Antialiasing Piecewise Polynomial Waveshapers Memoryless waveshapers are commonly used in audio signal processing. In discrete time, they suffer from well-known aliasing artifacts. We present a method for applying antiderivative antialising (ADAA), which mitigates aliasing, to any waveshaping function that can be represented as a piecewise polynomial. Specifically, we treat the special case of a piecewise linear waveshaper. Furthermore, we introduce a method for for replacing the sharp corners and jump discontinuities in any piecewise linear waveshaper with smoothed polynomial approximations, whose derivatives match the adjacent line segments up to a specified order. This piecewise polynomial can again be antialiased as a special case of the general piecewise polynomial. Especially when combined with light oversampling, these techniques are effective at reducing aliasing and the proposed method for rounding corners in piecewise linear waveshapers can also create more “realistic” analog-style waveshapers than standard piecewise linear functions.
Download Pywdf: An Open Source Library for Prototyping and Simulating Wave Digital Filter Circuits in Python This paper introduces a new open-source Python library for the modeling and simulation of wave digital filter (WDF) circuits. The library, called pwydf, allows users to easily create and analyze WDF circuit models in a high-level, object-oriented manner. The library includes a variety of built-in components, such as voltage sources, capacitors, diodes etc., as well as the ability to create custom components and circuits. Additionally, pywdf includes a variety of analysis tools, such as frequency response and transient analysis, to aid in the design and optimization of WDF circuits. We demonstrate the library’s efficacy in replicating the nonlinear behavior of an analog diode clipper circuit, and in creating an allpass filter that cannot be realized in the analog world. The library is well-documented and includes several examples to help users get started. Overall, pywdf is a powerful tool for anyone working with WDF circuits, and we hope it can be of great use to researchers and engineers in the field.
Download Differentiable grey-box modelling of phaser effects using frame-based spectral processing Machine learning approaches to modelling analog audio effects have seen intensive investigation in recent years, particularly in the context of non-linear time-invariant effects such as guitar amplifiers. For modulation effects such as phasers, however, new challenges emerge due to the presence of the low-frequency oscillator which controls the slowly time-varying nature of the effect. Existing approaches have either required foreknowledge of this control signal, or have been non-causal in implementation. This work presents a differentiable digital signal processing approach to modelling phaser effects in which the underlying control signal and time-varying spectral response of the effect are jointly learned. The proposed model processes audio in short frames to implement a time-varying filter in the frequency domain, with a transfer function based on typical analog phaser circuit topology. We show that the model can be trained to emulate an analog reference device, while retaining interpretable and adjustable parameters. The frame duration is an important hyper-parameter of the proposed model, so an investigation was carried out into its effect on model accuracy. The optimal frame length depends on both the rate and transient decay-time of the target effect, but the frame length can be altered at inference time without a significant change in accuracy.