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ABSTRACT

The sound of magnetic recording media, such as open-reel and
cassette tape recorders, is still sought after by today’s sound prac-
titioners due to the imperfections embedded in the physics of the
magnetic recording process. This paper proposes a method for
digitally emulating this character using neural networks. The sig-
nal chain of the proposed system consists of three main compo-
nents: the hysteretic nonlinearity and filtering jointly produced by
the magnetic recording process as well as the record and playback
amplifiers, the fluctuating delay originating from the tape trans-
port, and the combined additive noise component from various
electromagnetic origins. In our approach, the hysteretic nonlinear
block is modeled using a recurrent neural network, while the de-
lay trajectories and the noise component are generated using sep-
arate diffusion models, which employ U-net deep convolutional
neural networks. According to the conducted objective evaluation,
the proposed architecture faithfully captures the character of the
magnetic tape recorder. The results of this study can be used to
construct virtual replicas of vintage sound recording devices with
applications in music production and audio antiquing tasks.

1. INTRODUCTION

Magnetic recording has had a profound impact on the history of
recorded music, providing a dramatic leap in the quality of the
stored audio in comparison to the earlier direct-to-disk techniques.
The advances in magnetic recording grounded practices such as
multitrack and sound-on-sound recording within the industry, and
as the technology matured and became cheaper, allowed for en-
tire generations of professional and amateur musicians alike to ex-
periment with these powerful production techniques. Reel-to-reel
tape recorders, an example of which is shown in Fig. 1, have been
largely replaced by digital recording techniques for sound capture
and reproduction. However, the idiosyncrasies of the magnetic
recording process are now used as a creative effect. This paper
studies the imperfections of the magnetic recording process and
emulates them digitally and with neural networks.

Virtual analog (VA) modeling is an area of digital signal pro-
cessing with a rich lineage in the past decades, aiming at mod-
eling analog audio devices and making the emulations available
as software [1]. The techniques used for the modeling are tradi-
tionally divided into white-box, grey-box, and black-box methods,
depending on the type of information used as the basis for the task.
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Figure 1: Akai 4000D reel-to-reel tape recorder.

White-box techniques use exact knowledge of the underlying cir-
cuits to reconstruct the physics in the digital domain in order to
match the observed behavior. Black-box techniques use observa-
tions collected from the target as the basis and optimize a general-
purpose method to replicate the behavior. In grey-box modeling, a
combination of white- and black-box methods is used. Over the
last decade, advances in deep learning have given rise to their
increased application also for VA modeling, with the techniques
capable of exhibiting state-of-the-art performance in a number of
different tasks [2, 3, 4].

While the physics underlying magnetic recording has been
studied thoroughly in the past [5, 6], it has been applied for the
purpose of digitally emulating the recording process only recently
[7]. Pertinent to this topic is the lineage of work related to the
modeling of tape delay devices, which has been covered more ex-
tensively [8, 1, 9]. In our work, we build up from earlier literature
on emulating the sound of the magnetic tape, and propose a grey-
box system for the emulation task. We consider the sound of the
tape recorder to be build up of the nonlinear hysteretic magneti-
zation of the tape medium, the filtering produced by the recording
and playback heads, a fluctuating delay induced by the imperfec-
tions in the tape transport mechanism, the tape hiss, as well as the
subtle nonlinearities and filtering of the input/output amplifiers.
The proposed system uses a hybrid array of modern deep-learning
techniques as the backbone for modeling these different aspects of
the character.

The rest of this paper is organized as follows. Sec. 2 reviews
the background theory regarding the effects of magnetic recording.
Sec. 3 gives an overview of the system proposed for the modeling.
Sec. 4 provides details concerning the data used to evaluate the
proposed method, while Sec. 5 describes the training process for
the different network architectures. The experimental procedure
is divided into two sections depending on the type of data used
for the evaluation: in Sec. 6, toy data collected from a virtual tape
machine is used, while Sec. 7 uses data from a real machine. Sec. 8
concludes the work.
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Figure 2: (a) Real and (b) VA system block diagrams.
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Figure 3: Tape magnetization nonlinearity exhibits hysteresis.

2. MAGNETIC RECORDING

The block diagram of a typical magnetic recorder is shown in
Fig. 2a. The system consists of a recording amplifier, a recording
head, the moving tape medium, a playback head, and a playback
amplifier. The following paragraphs briefly discuss each of these
components and their contribution to the overall character, based
on earlier literature [7, 5, 6, 1, 8, 9].

The recording head takes the input current from the recording
amplifier, and produces a spatial magnetic field determined by both
the properties of the recording head and the magnitude of the input
current. When the moving magnetic tape is exposed to this field,
the magnetic dipoles in the substrate take the form of the field,
which is retained as it passes the volume of the field. Since the
characteristic magnetization of the tape takes a hysteretic nonlinear
shape, shown in Fig. 3, a high-frequency bias is added to the input
signal to reduce the nonlinearity produced by the hysteresis.

As the tape moves past the playback head, the changing mag-
netic field induces a current within its internal coil, restoring part
of the stored signal into electrical form. This recovery of the signal
is a spatial integration over the magnetized volume of tape, which
leads to tape-speed-dependent filtering, shown in Fig. 4. The fil-
tering consists of components related to the spacing between the
head and the tape, the tape thickness, and the playback head gap.

To counterweight the spatial filtering induced by the playback
head, the recording and playback amplifiers are used as pre- and
post-filtering stages. This also serves to maximize the dynamic
range of the tape and condition the input and output signals of the
system. In our reference design shown in Fig. 1, these amplifiers
are implemented with cascaded transistor circuits, producing addi-
tional low-order harmonic distortion in the processed signal.

The tape movement speed is not perfectly constant, due to
small fluctuations produced by imperfections in the tape transport
mechanics. These imperfections include cyclical components pro-
duced by the moving parts in the transport mechanism as well as
stochastic behavior, shown in Fig. 5a, in the form of a delay trajec-
tory. These inconsistencies in the movement can be heard as small
fluctuations in pitch, known as wow and flutter.
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Figure 4: Three components of playback losses.

Magnetic tape recorders generate noise artifacts throughout
the recording and playback stages, which contribute to the dis-
tinctive qualities of the resulting audio signal. The noises could be
originated by multiple sources, such as the playback equipment,
the magnetic particles in the tape coating, modulation noises dur-
ing recording, or surface asperities, among others [10].

3. METHODS

We employ a grey-box model, shown in Fig. 2b, inspired by the
block diagram of the target device. The signal path for the pro-
posed system consists of three components: 1) a hysteretic nonlin-
earity for modeling the magnetic recording process lumped with
the record/playback amplifier responses, 2) a time-varying delay
line controlled by a delay trajectory generator, and 3) an additive
noise component. In the following, details concerning these com-
ponents as well as the capture of delay trajectories are given.

3.1. Delay Trajectory Retrieval

The fluctuating time delay between the record and playback heads
is captured using a pulse train-based measuring technique [8, 11,
7]. The measurement signal consists of a train of unit impulses
spaced T = 1/f apart, where f is the repetition frequency. This
signal is played through the target device, and the locations of the
input and output pulses are compared to determine the time delay
between the heads as it fluctuates over time. The frequency f of
the pulse train determines the sampling rate for the captured trajec-
tories and in our experiments f = 100Hz was used [8, 9]. An ex-
ample of a measured delay trajectory, as well as the measurement
signal at the input and output of a studied target are illustrated in
Fig. 5.

3.2. Lumped Nonlinearities

The lumped effects include the hysteretic nonlinearity of the mag-
netization process, the spatial filtering of the playback head, as
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Figure 5: (a) Delay trajectories and (b) measurement signal.

well as the low-order distortion components and filtering origi-
nating from the record and playback amplifiers. We choose a re-
cursive neural network (RNN) architecture for modeling these as-
pects, consisting of a gated recurrent unit and a linear output layer
[2]. The model details can be found in the original research arti-
cle. The choice of the model stems from the stateful nature of the
recurrent unit, which we hypothesize as being helpful in learning
the hysteresis shape. Three training schemes for training the RNN
are considered: two supervised and one adversarial, explained in
the following subsections.

3.2.1. Supervised Approaches

For the supervised approaches, we exploit the stereo nature of most
tape recorders. We construct stereo training signals with the audio
content on the left channel embedded with the measurement pulse
train signal on the right. Using the pulse detection algorithm to
construct the delay trajectories for each individual audio segment,
the time evolution of the tape medium can be captured and used to
restore the alignment of the targets and model predictions.

We implement and compare two approaches for restoring the
alignment, shown in Fig. 6. In the first approach (Fig. 6a), inspired
by Kaloinen’s work [9], we use the captured delay trajectory τ to
demodulate the target segment y∗

L = demod(yL, τ ), where ∗ de-
notes a signal which has been demodulated or has not had a delay
line applied to it. After this procedure, the demodulated signal and
the raw output from the nonlinear block become aligned and we
compute the loss L(ŷ∗

L,y
∗
L). In this scenario, the gradients flow

only through the nonlinear block, and the time-varying delay line
is only added during inference.

In the second approach, shown in Fig. 6b, we use the cap-
tured delay trajectory τ to delay the raw output from the nonlin-
ear block ŷL[n] = ŷ∗

L[n − τ [n]] in order to compute the loss
directly as L(ŷL,yL). In this approach, the gradients flow also
through the delay line, which needs to be differentiable. Linear
interpolation was used to implement the continuously variable de-
lay line, and the implementation was originally included in the
Magenta DDSP codebase [12]. Care must be taken to avoid non-
differentiable rounding operations such as the floor operator.

The delay line is initially filled from left to right with inte-
gers representing delay-line length, starting from N and decreas-
ing with a step size of 1, with the final value being 0. The desired
delay-line length is subtracted from each element of this vector
and the abs operator is applied. Each element of this vector is sub-
tracted from 1, and finally, the rectified linear unit (ReLU) function
is applied, resulting in a vector where all indices are filled with ze-
ros, except for the indices with indexes immediately above and
below the desired delay-line length. This vector can then be multi-
plied element-wise with a buffer of previous input values, and the
sum of this operation produces the output of the delay line.

3.2.2. Adversarial Approach

An alternative approach using an adversarial training method is
also proposed. This allows for the modeling of monophonic tape
recorders. In this method, measured or synthesized delay lines are
applied to the RNN model output. Instead of training the model
using a supervised loss function, which requires the delay line to
be known, an adversarial loss can be used such that the delay line
applied does not have to match the actual delay line applied in
the training data. In this case, a discriminator model is trained to
distinguish between real examples of processed audio from the tar-
get dataset, and synthetic examples which are produced using our
modeling approach. The discriminator model and training proce-
dure used are identical to those used earlier by Wright et al. [13].
The discriminator receives a time-frequency representation of the
audio as input, and consists of a stack of 1D convolutional layers,
with the first layer treating the frequency bins as an input channel.
The discriminator and the tape model are trained adversarially us-
ing the hinge loss function.

3.3. Noise Generator

The background noise component is modeled using a diffusion
probabilistic model [14], in a similar fashion to previous work
from Moliner and Välimäki [3]. A diffusion model is used as
a data-driven universal approximator of the probability distribu-
tion of all the additive disturbances that are introduced during the
recording, magnetization, and playback processes. The model can
be trained with recorded silent passages containing only the back-
ground textures produced by the reel-to-reel machine. By revers-
ing a diffusion process, white Gaussian noise segments are pro-
gressively morphed into noises from the training data distribution.
Based on the assumption that the noises are additive, the generated
noise samples are added to the output signal as a final step.

Although we have adopted the main concept from a previous
work [3] as a basis for our research, there are significant devia-
tions in the technical details of our approach due to our use of
more recent developments on diffusion models. We adopt some of
the design choices from Karras et al. [15], including the ordinary
differential equation (ODE) formulation, the neural network pre-
conditioning, the training objective, and the noise schedule param-
eterization, the latter being a Variance Exploding noise schedule
[16].

3.4. Trajectory Generator

Given the stochastic nature of the delay trajectories underlined in
Sec. 2, in this work, they are modeled using a probabilistic gen-
erative model. Similar to Sec. 3.3, a diffusion model is also used
to for this task. In this case, the model is trained to emulate the
distribution of the measured delay trajectories.
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Figure 6: Supervised approaches for training the nonlinearity: (a) Demodulation and (b) differentiable delay line.

4. DATA COLLECTION

This section provides details concerning the data used in the exper-
imental procedure, including the compiled datasets. The compiled
datasets are made available in the accompanying webpage 1.

As input data, we use a fraction of the inputs from Signal-
Train [17] for training the nonlinear block. The dataset consists of
short musical passages representing varying genres played using
various instruments, together with synthetic measurement signals,
sampled at 44.1 kHz. A total of 60 min, 20 min, and 15 min of
audio is used for training, validation, and testing, respectively.

4.1. Toy Data

We test the modeling architecture using synthetic data, generated
via wrapping the VST instance of CHOWTape [7], a white-box
modeled tape machine, using Pedalboard 2. During the generation,
the VST instance is set to 16× oversampling using an 8-iteration
Newton-Rhapson solver for the tape hysteresis ODE, which are
the highest quality settings available. To make sure the virtual tape
is sufficiently saturated, the tape drive, tape saturation, and tape
bias are set to (0.75, 0.75, 0.0) ∈ [0, 1], respectively. The timing
parameters—the flutter depth, wow depth, and wow variance—
are set to (0.75, 0.75, 1.0) ∈ [0, 1], respectively. We turn off any
additional processing from the VST which did not appear in the
original research article. Two datasets are collected for the exper-
iments with the toy data: one with only the tape effects enabled
and the timing effects disabled, and one with both of the effects
enabled.

4.2. Real Data

The real data for evaluating the modeling architecture was col-
lected using an Akai 4000D open-reel tape recorder (Fig. 1). The
device is a 1

4
inch, four-track, three-head, stereo recorder from the

1970s, capable of running at 3 3
4

and 7 1
2

inches per second (IPS)
and using discrete transistor circuitry for the input/output ampli-
fiers. The data was collected using two types of magnetic tape:
a Maxell low-noise/high-output tape and a Scotch low-noise tape
from the 1970s. An RME Fireface UCX audio interface was used
for recording and playback.

Using a three-head recorder allows for simultaneous recording
and playback to and from the tape, allowing the fluctuating time

1http://research.spa.aalto.fi/publications/
papers/dafx23-neural-tape/

2https://github.com/spotify/pedalboard

delay between the record and playback heads to be captured. In
practice, we connect a stereo line feed from the audio interface into
the line inputs of the tape recorder, set monitoring to TAPE, and
record both the stereo line feed from the tape recorder, as well as a
loopback signal from the interface outputs back to its inputs. The
recording level of the device was set such that when monitoring
the signal entering the tape (monitoring set to INPUT), a 0 dBFS
signal from the interface is just below the clipping threshold of the
record and playback amplifiers.

The collected data is divided into datasets used for training
the lumped nonlinearities, the delay trajectory generator, and the
noise generator. We collected two versions of each dataset using
the (tape branch, tape speed) configurations (MAXELL, 7 1

2
IPS)

and (SCOTCH, 3 3
4

IPS). While initially the same datasets were
intended to be used for training both the nonlinear block and the
delay trajectory generator, studying the extracted trajectories from
the lumped nonlinearity datasets revealed that the accuracy of the
trajectory generator would be severely limited by the considered
sampling rate of 44.1 kHz, and thus we collected separate high-
resolution datasets at 192 kHz for the trajectory generator, con-
sisting of the same upsampled audio. Finally, to train the noise
generator, two datasets consisting of only the hiss captured from
the line feed of the tape recorder were collected using the original
sampling rate of 44.1 kHz.

5. IMPLEMENTATION DETAILS

This section provides details concerning implementing the differ-
ent components in the modeling architecture, including modeling
training and the loss functions used.

5.1. Supervised Approaches

The first two approaches use supervised training to optimize the
weights of the nonlinear block, aligning the target and output seg-
ments using the proposed methods shown in Fig. 6. The RNN is
trained using truncated back-propagation through time (TBPTT)
[18], allowing the RNN state to initialize before tracking the gra-
dients. For the first approach, the RNN state is initialized for 1024
steps, and for the second, the initialization length is determined
by taking the next power of two of the maximum delay length
in samples encountered in the training dataset. We use a hidden
size of 64 as preliminary experiments indicated that increasing the
hidden size beyond this did not bring an improvement in model
performance. We use Adam with the default hyperparameters as
implemented in PyTorch as the optimizer. We use a learning rate
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of 1× 10−3 and reduce it with a factor of 0.75 every time the val-
idation loss has not improved for 10 epochs. A batch size of 32
is used for all the experiments and the models are trained using a
graphical processing unit for 4 hours.

To compute the prediction discrepancy against the target out-
put for the supervised approaches, the error-to-signal ratio (ESR)
loss is used [19]. Details concerning the loss function can be found
in the paper by Damskägg et al. [19].

5.2. Adversarial Approach

For the adversarial training method, TBPTT was also used. As
the time-varying delay line is initially filled with zeros, the ini-
tialization stage is run for a number of steps equal to the maxi-
mum measured delay-line length. This ensures that the delay line
is filled with real values during TBPTT. A segment length of 2
seconds was used during training, with parameter updates being
carried out every 16384 samples. The longer TBPTT length was
used as the discriminator model uses a time-frequency representa-
tion of the signal as input. As such, longer input lengths increase
the frequency resolution that is seen by the discriminator model.

The discriminator and RNN model are alternately trained us-
ing the hinge loss function described by Kumar et al. [20]. A batch
size of 16 was used during training. During validation, paired data
was used to evaluate the RNN model, with the measured delay line
being applied at the output of the RNN. Training was run for 50
epochs, with a multi-resolution log spectral magnitude loss being
used to select the best performing model weights.

5.3. Noise Generator

We train our diffusion models following the recommendations by
Karras et al. [15]. Considering that the standard deviation of the
recorded data is, approximately, σdata = 8×10−4, the noise sched-
ule is defined so that, during sampling, the Gaussian noise level
decreases logarithmically across the reverse diffusion process from
σmax = 0.1 (completely masking the data) to σmin = 5×10−5 (per-
ceptually insignificant). During training, the model is trained with
the L2 preconditioned objective from [15], where the noise level
is sampled randomly with a LogUniform distribution. The model
is trained with the Adam optimizer with the default momentum
hyperparameters and a learning rate of 2 × 10−4. An exponen-
tial moving average of the weights with a decay factor of 0.999 is
tracked during training and used as the final inference model.

A standard time-domain convolutional U-Net is used as the
backbone deep neural network architecture, which is conditioned
on a noise level embedding that allows weights to be shared across
different noise levels. The total number of parameters adds to
127k, which is relatively low when compared to standard practice
for diffusion models, but has proven qualitatively to be enough
for this particular use-case. Inference is performed with a denois-
ing diffusion implicit model (DDIM) [21] sampler with a subtle
amount of stochasticity, which allows for a trade-off between sam-
pling speed and quality by adjusting the number of sampling steps.
We use 16 steps in our experiments, but we observe that this num-
ber can be reduced down to 6 without a significant quality loss.

The noise generator model is trained with samples of 1.5-s at
the sampling rate of 44.1 kHz. However, given that the architecture
is fully-convolutional, the segment size could be freely adapted
during inference. In addition, arbitrarily long sequences can be
generated by applying a chunked autoregressive sampling strategy,
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Figure 7: Model hysteresis using toy data - Lumped nonlinearities
only.

where separate frames are concatenated and inter-frame coherence
can be ensured by applying a zero-shot outpainting technique [22].

5.4. Trajectory Generator

The delay trajectory generator is trained in a very similar way as
the noise generator, specified in Sec. 5.3, while only some im-
plementation details concerning the characteristics of the data dif-
fer. The model is trained with 5.2-s segments at a sampling fre-
quency of 100 Hz, defined by the measuring pulse frequency (see
Sec. 3.1), resulting on segments of 512 samples. During training,
every delay trajectory segment is mean-normalized, leaving only
the local fluctuations from the average delay as the distribution to
be modeled. The backbone neural network architecture is also a
standard convolutional U-Net with 77k trainable parameters; we
refer to the source code for further details. The noise schedule de-
sign is motivated analogous to Sec. 5.3 and depends on the statis-
tics of the dataset. For the toy data experiment (see Sec. 6), the
approximated data standard deviation is σdata = 6.8 × 10−3, and
the noise schedule is designed between σmax = 0.5 and σmin =
1× 10−5. For the real data experiment (see Sec. 7), the data stan-
dard deviation is approximately σdata = 1 × 10−4, and we found
that σmax = 0.01 and σmin = 1 × 10−5 were a suitable design
choice. The sampling is performed with a 10-step DDIM sampler
[21], but we observed that the number of discretization steps could
be reduced down to only 4 with minimal qualitative differences.

6. EXPERIMENT 1: TOY DATA

This section presents experiments using synthetic data in two sub-
sections. Sec. 6.1 studies the capability of the modeling method
for the hysteretic magnetization of the tape without the fluctuating
timing effects. Later, the timing effects are also enabled, allowing
the evaluation of the three training schemes for the nonlinearity
in Sec. 6.2 and the trajectory generator in Sec. 6.3. The toy data
does not contain a noise component, however. Audio examples for
these experiments are available on the accompanying web page 1.

6.1. Lumped Nonlinearities Only

To evaluate model performance, we use the ramped sine technique
for the hysteresis [23]. Additionally, we encourage readers to lis-
ten to the example predictions on the accompanying web page1.
The ramped sine technique is especially useful here, since it eval-
uates both the deadzone effect resulting from an under-biased tape
and the saturation at higher amplitudes.

The model hysteresis versus the target is shown in Fig. 7.
While the match is not perfect, the model clearly learns the shape
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Figure 8: Model hysteresis using toy data - Nonlinearities and tim-
ing effects.

of the hysteresis loop, including the deadzone effect, the saturation
of the tape, as well as the loop width. Listening and comparing the
model predictions against the target further validates this finding,
confirming the suitability of the RNN architecture for modeling
the type of nonlinearity.

6.2. Lumped Nonlinearities and Timing Effects

The various training schemes are evaluated as in Sec. 6.1, on top
of which the model losses over the test set are compared. Since
the adversarial models are not trained with a time-domain loss,
we include a multi-resolution short-time Fourier transform (STFT)
loss [24] in the comparison. We use the default hyperparameters
for the method as implemented in the Auraloss library [25]. Model
predictions can be found in the accompanying webpage1.

The hysteresis of the models trained using the three approaches
versus the target is shown in Fig. 8. While it can be seen that the
models trained using the supervised approaches match the shape of
the hysteresis well, the hysteresis shape of the adversarially trained
model deviates from the target. This can be explained by the ad-
versarial model being trained on a time-frequency domain loss,
which does not enforce strict time-domain matching, which is the
case for the two supervised models.

The LESR and LSTFT losses over the test set are listed in Ta-
ble 1, where the best (smallest) results are highlighted with bold
font. The losses for the first supervised approach are computed
either via using the real delay trajectories to demodulate the tar-
gets (Demodulated, similar to training) or applying the trajecto-
ries to the predictions (Delayed, similar to inference). As can be
seen from the results, the second supervised approach produces
the best overall performance across the considered metrics. While
the time-domain loss LESR is two orders of magnitude higher for
the adversarial approach than for the supervised approaches, their
time-frequency domain losses LSTFT are of similar magnitude. For
the first supervised approach, it can be seen that for both consid-
ered losses, the delayed computational method results in a smaller
error. This finding suggests that demodulating the outputs can pro-
duce a larger error in comparison to delaying them with an inter-
polated delay line.

Table 1: Toy Data: Nonlinearities and timing effects.

LESR LSTFT

Approach Demod. Delayed Demod. Delayed

Supervised I 0.031 0.029 0.645 0.536
Supervised II – 0.029 – 0.488
Adversarial – 1.567 – 1.772

0.0 2.5 5.0
Time [s]

20

30

40

D
el

ay
 [m

s]

(a) Measured

0.0 2.5 5.0
Time [s]

(b) GeneratedFigure 9: Measured (left) and generated (right) delay trajectories
using toy data.

6.3. Trajectory Generator

We experiment with the diffusion model approach to generate the
delay trajectories from the toy experiment, which have been syn-
thesized as described in Sec. 4.1. Despite our best efforts to devise
a methodology for objective evaluation, we found that the stochas-
tic nature of the data and the complexities involved made it difficult
to quantify its effectiveness in a reliable and consistent manner. As
such, we rely on a merely qualitative assessment, which we believe
provides sufficient evidence of the successful model capabilities.
In Fig. 9, we show a qualitative comparison between measured tra-
jectories and generated ones. In this case, 10 iterative steps were
used to sample from the diffusion model, requiring 10 function
evaluations of the neural network. The data contains a prominent
sinusoidal component with some spurious artifacts, which seem to
be accurately modeled by the diffusion model.

7. EXPERIMENT 2: REAL DATA

Next, the proposed method is evaluated using real data collected
from the Akai 4000D tape recorder. Since the toy data did not
include a noise component, this section serves as the first valida-
tion for the capability of the noise generator to learn the charac-
ter of the media, as well as further validates the performance of
the other two architectural components. Audio examples from the
conducted experiments can be found on the web page1.

7.1. Lumped Nonlinearities and Timing Effects

We start with the same evaluation strategy as in Sec. 6.2, but find
that the magnetic field produced by the recording head is not suf-
ficient to saturate the considered tape formulations, as has been
encountered earlier [1]. Thus, instead of comparing the hysteresis
of the trained models, we focus on the learned magnitude response
and nonlinear distortion components [26]. Only one configuration
(MAXELL 7 1

2
IPS) is evaluated here for the sake of brevity. The

model predictions can be found on the accompanying web page1.
We find the responses of the supervised models similar, and

only show the learned magnitude response and nonlinear distor-
tion components versus the target for the first supervised approach
in Fig. 10a. As can be seen, the model closely matches the shape
of the linear response: the attenuated middle frequencies, the sub-
tle emphasis of the highs, as well as the high and low-frequency
roll-offs. While the target also portrays the head-bump effect in
the low frequencies, this aspect is not matched by the model. We
suspect that this might have to do with the dataset used for train-
ing the models not having enough low-frequency content to suffi-
ciently learn this frequency band. While the model also learns to
produce nonlinear distortion from the target data, the shape of the
contours is not matched well, and the model starts to alias above
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(a) Supervised I.
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Figure 10: Model magnitude responses (solid) and distortion components (dashed), MAXELL 7 1
2

IPS.
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(b) GeneratedFigure 11: Measured (left) and generated (right) delay trajectories
using real data.

about 5 kHz, as seen in the sudden increase of nonlinear distortion
components in Fig. 10a. The learned magnitude response and non-
linear distortion components for the adversarially trained model
are shown in Fig. 10b. Now the match is poor in both the linear
response as well as the nonlinear harmonic components.

The LESR and LSTFT losses over the test set for all of the ap-
proaches are listed in Table 2. Similarly as in Sec. 6.2, the two su-
pervised approaches outperform the adversarial approach in terms
of both of the considered metrics, with an order of magnitude
difference in the time-domain LESR loss. Unlike before, the first
supervised approach performs slightly better than the second ap-
proach, although the difference is not large. While the two meth-
ods for computing the losses for the first supervised approach pro-
duce similar evaluation metrics, this time the demodulated compu-
tational method brings slight improvements in the LSTFT loss. This
finding suggests that the error produced by the two computational
methods also depends on the type of data used.

7.2. Trajectory Generator

Fig. 11 shows delay trajectory samples from the measured data
compared to those generated with a 10-step diffusion model. The
generated delay trajectory waveforms look realistic at first glance
but, in order to provide more insights into the model behavior, we
conduct a spectral analysis. Fig. 12 shows the summary statistics
(mean and standard deviation) of the long-term spectrum of the
measured trajectories compared to that of a batch of 256 gener-
ated samples. The data presents some characteristic spectral peaks
that the diffusion model is succeeding at replicating. It can also

Table 2: Real Data: Nonlinearities and timing effects.

LESR LSTFT

Approach Demod. Delayed Demod. Delayed

Supervised I 0.066 0.065 1.597 1.649
Supervised II – 0.092 – 1.971
Adversarial – 1.193 – 2.437
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Figure 12: Average spectra and standard deviations of delay tra-
jectories using real data.

be observed that the average spectral magnitude of the generated
trajectories is slightly lower than the target; we attribute this to the
over-denoising phenomena that most diffusion models show, as it
was observed in [15]. Nevertheless, we believe that these minor
dissimilarities will pose no perceptual difference.

7.3. Noise Generator

We assess the diffusion noise generator qualitatively, similar to the
delay trajectory generator, since an objective evaluation is not fea-
sible. Fig. 13 displays the long-term spectra of the noise data and
compares it with that of the generated noises using the diffusion
model with 16 discretization steps. The plot in Fig. 13 has been
smoothed using a 1/6th octave band. The majority of the energy in
the target data distribution is concentrated in the low-frequency re-
gion, with some spectral peaks caused by electrical noise. The dif-
fusion model successfully replicates the spectral distribution, and
the over-denoising effect observed in Sec. 7.2 does not occur as a
consequence of using a stochastic sampler. Additionally, the noise
generator can effectively model some non-stationary local charac-
teristics in the noise data that are not adequately represented in the
spectral analysis. We refer the reader to the audio examples on the
companion webpage1.

8. CONCLUSIONS

This work proposed an architecture for modeling the character of
magnetic tape recorders, consisting of three components for repro-
ducing the different aspects of the target: 1) a nonlinear block for
the joint effects of the magnetic recording process as well as the
record and playback amplifiers, 2) a time-varying delay line con-
trolled by a delay trajectory generator for imperfections in the tape
transport, and 3) a noise generator for the tape hiss. The differ-
ent blocks were implemented using separate neural network archi-
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Figure 13: Average spectra and standard deviations of tape hiss.

tectures: an RNN for the nonlinear block and separate diffusion
models for the delay and noise generators. Three training schemes
were considered for the nonlinear block: two supervised and one
adversarial.

Our results indicate that the RNN architecture is suitable for
learning the characteristic hysteretic nonlinear behavior of the tape
magnetization. This was also found recently elsewhere for the
related case of audio transformers [4]. Based on objective and
qualitative evaluation and informal listening, the two supervised
approaches for the nonlinear block together with the generative
models for the delay trajectories and tape hiss capture the percep-
tual character of the tape recorder as a whole. While the proposed
supervised training schemes require the target machine to operate
in stereo, an aspect of which was circumvented by the adversarial
approach, this latter approach did not prove mature yet in learning
the nonlinear character of the tape.
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