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ABSTRACT
Modelling of analogue devices via deep neural networks (DNNs)
has gained popularity recently, but their performance is usually
measured using accuracy measures alone. This paper aims to as-
sess the performance of DNN models of a high-gain vacuum-tube
guitar amplifier using additional subjective measures, including
preference and realism. Furthermore, the paper explores how the
performance changes when genre-specific training data is used. In
five listening tests, subjects rated models of a popular high-gain
guitar amplifier, the Peavey 6505, in terms of preference, realism
and perceptual accuracy. Two DNN models were used: a long
short-term memory recurrent neural network (LSTM-RNN) and a
WaveNet-based convolutional neural network (CNN). The LSTM-
RNN model was shown to be more accurate when trained with
genre-specific data, to the extent that it could not be distinguished
from the real amplifier in ABX tests. Despite minor perceptual in-
accuracies, subjects found all models to be as realistic as the target
in MUSHRA-like experiments, and there was no evidence to sug-
gest that the real amplifier was preferred to any of the models in
a mix. Finally, it was observed that a low-gain excerpt was more
difficult to emulate, and was therefore useful to reveal differences
between the models.

1. INTRODUCTION

Analogue vacuum-tube guitar amplifiers are still valued in the au-
dio community, despite being heavy, expensive, and high-maintena-
nce. Historically, several methods have been proposed to emulate
vacuum-tube amplifiers [1], including white-box models such as
transient modified nodal analysis and wave digital filters [2], and
block-oriented grey-box methods such as the Wiener-Hammerstein
topology [3]. More recently, advances in deep neural networks
(DNNs) have seen promising results compared to traditional ap-
proaches [4, 5, 6]. Neural networks are particularly well suited
to the black-box modelling of the complex and non-linear internal
operations of a guitar amplifier, where training can be performed
based on input data (a direct-injected guitar signal) and output data
(the distorted, amplified signal) alone. In the literature, DNN mod-
els are normally evaluated using objective accuracy measures such
as error-to-signal ratio [7, 4] and mean square error based metrics
[8, 9, 10]. Subjective accuracy measures have also been seen in
the works of [4] and [5], where subjects were asked to rate mod-
els in terms of how accurately they approximated the timbre of
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the reference, and in terms of perceived similarity to the reference,
respectively. However, the ‘realism’ and ‘preference’ of DNN am-
plifier models has not been studied to the same extent - is the accu-
racy of a guitar amplifier model as important as its realism? Also,
could a model be preferred to the real amplifier? This paper aims
to assess the subjective performance of two popular DNN topolo-
gies, namely a long short-term memory recurrent neural network
(LSTM-RNN) and a WaveNet-based convolutional neural network
(CNN), modelling a popular high-gain vacuum-tube guitar ampli-
fier, the Peavey 6505.

Guitar amplifiers are often specific to certain genres of music.
This is especially so for high-gain amplifiers, which are commonly
used in heavy rock and metal. Furthermore, certain types of gui-
tar hardware are used more than others, as well as certain playing
techniques. Several guitar recordings datasets are publicly avail-
able, including the Fraunhofer Institute for Digital Media Technol-
ogy (IDMT) guitar and bass datasets [11, 12]. These recordings
include a range of general techniques, notes and guitar types, and
have been used in [10], [8] and [13] to train DNN amplifier mod-
els. As Parker et al. point out [14], the state-space of an audio
system may require certain inputs in order for the target charac-
teristics to be learned effectively, such as for nonlinearities that
only occur above a magnitude threshold. On this basis, it is hy-
pothesised in this paper that DNN models of high-gain amplifiers
should be trained using data tailored to the target device. In this
paper, the IDMT dataset is compared to two genre-specific training
files, focused on rock and metal styles, respectively.

The paper is organised as follows. Section 2 describes the
target system, i.e. the amplifier and loudspeaker cabinet chain.
The DNN models used in this work are then detailed in Section 3,
the training of which is outlined in Section 4. The methodology
and results of the listening experiments are presented in Section 5,
and the results are discussed in Section 6. The main conclusions
are summarised in Section 7 with suggestions for further work.

2. TARGET SYSTEM

The target system consists of a guitar amplifier and a loudspeaker
cabinet. Only the guitar amplifier was modelled as part of the
DNNs, while the loudspeaker cabinet was modelled separately [13],
as a linear time-invariant (LTI) system.

The selected target amplifier is the high-gain vacuum tube
Peavey 6505, a popular choice in metal recording. High-gain am-
plifiers usually consist of a preamplifier stage with around 3-7
small vacuum-tubes, commonly 12AX7 dual-triodes, which pro-
vide the majority of the non-linear signal distortion [2, 15]. For
high-gain amplifiers, a ‘drive’ parameter applies gain to the input
signal before this stage to drive the preamplifier tubes, thus in-
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creasing the total harmonic distortion (THD) of the system. The
preamplified signal passes through a linear tone stack circuit be-
fore power amplifier vacuum-tubes provide signal gain to suffi-
ciently drive the loudspeaker cabinet [2]. These power tubes con-
tribute to the linear tonal characteristics of the amplifier, referred to
as the ‘British’ or ‘American’ tone depending on their model [15].

The selected target loudspeaker cabinet was a Marshall 1960-
AV, consisting of four 12-inch Celestion Vintage 30 loudspeakers
which were also used in [16]. The impulse response (IR) of the
loudspeaker cabinet was measured using a 30-second long expo-
nential sine sweep (ESS). The sweep was generated at -6 dBFS
which was routed to the line output of a Universal Audio Apollo
Twin X audio interface. A QSC RMX850 power amplifier was
used to apply clean gain to the ESS signal, the output of which was
connected to the matched-impedance input of the loudspeaker cab-
inet. The loudspeaker response was recorded using a Royer R-121,
a professional-grade figure-8 ribbon microphone with a 30–15,000
Hz ±3dB response and very high overload characteristics (135
dB SPL). The microphone was positioned at approximately 20mm
off-centre from the dust cap. The output SPL of the loudspeaker
cabinet was set high enough to provide sufficient SNR, yet not to
the extent where significant cone breakup was introduced.

3. DNN MODELS

Two DNN topologies that have been previously used for guitar
amplifier modelling are a feedforward variant of WaveNet and
an LSTM-based RNN, both of which are compared in [10], [13],
and [17]. The implementation used in this paper for the WaveNet-
based CNN is the PedalNetRT repository, while the one used for
the LSTM-RNN is the Proteus repository [18]. PedalNetRT mod-
ifies the original pedalnet repository [19], which was a recreation
of the WaveNet-based model from the paper by [7]. The modifica-
tion uses custom causal padding and reorganises conv1d layers to
allow trained models to be saved as .json files, which can be loaded
using the audio plugin from the WaveNetVA repository [20].

The Proteus project consists of an audio plugin built using RT-
Neural, a realtime C++ inferencing engine [21]. The plugin can
load models trained using the Automated GuitarAmpModelling re-
spository [18], forked from Wright’s repository [22], which is an
implementation of the LSTM-RNN network used by Wright et
al. [13] in their modelling of the Blackstar HT-1 amplifier and the
Big Muff Pi pedal.

Despite both of these models being capable of conditioned
training, where the effects of varying a parameter such as drive can
be learned, the models in this paper were designed to be a ‘snap-
shot’, i.e. a model of the amplifier with fixed parameters, since this
was sufficient for the scope of the experimentation.

The LSTM-RNN models used the hyperparameters recom-
mended by [18] for medium to high-gain amplifier emulation. This
used an LSTM hidden size of 40 as required by the Proteus audio
plugin, no pre-emphasis filtering, one recurrent block, and a skip-
connection. The WaveNet-based models in this experiment used
the default hyperparameters from PedalNetRT, i.e. 9 layers, 4 con-
volution channels, a kernel size of 3 and a batch size of 64. While
this is lower than what was suggested by Wright et al. [7], these
hyperparameters result in a running complexity closer to LSTM-
RNN. It is acknowledged that this hyperparameters configuration
does not represent the full potential of the WaveNet-based CNN,
and therefore the two DNN topologies are not compared directly
in this work.

4. TRAINING

This section details the process of producing the direct inject (DI)
and amplifier signals for three training sets: a general dataset,
an existing genre-specific dataset, and a proposed genre-specific
dataset. Both DNNs introduced in Section 3 were trained on each
training set, using back-propagation with a loss function based on
the error-to-signal ratio (ESR). Google Colab was used to train the
LSTM-RNN models, and the WaveNet-based models were trained
remotely using the University of Surrey High Performance Clus-
ter, utilising the Python preparation and training files provided in
the aforementioned repositories by Bloemer [18].

4.1. Existing Training Datasets

The training file used by Wright et al. [13] in their emulation of the
Blackstar HT-1 amplifier, accessible from [18] is used here. This
training set was constructed using excerpts from the Fraunhofer
IDMT databases, forming a 5 minute, 40 second file of half bass
and half electric guitar. A range of pickup selections and string
gauges were used, and the main playing techniques are described
in Table 1. This training is henceforth referred to as the general
training.

Bloemer [18] recorded a set of genre-specific training samples
featuring a wider range of techniques and notes than the general
file, lasting 3 minutes and 31 seconds. The excerpts in this training
are more rock-oriented than those of the IDMT database, and the
duration was weighted more towards electric guitar than bass. This
training dataset is henceforth referred to as the rock-specific train-
ing, and serves as a middle ground between the general training
and the training made specifically for the Peavey 6505.

4.2. Proposed Metal-specific Training

Rock and metal genres of music share many electric guitar tech-
niques, with some aspects being more exclusive to metal such as
pinch-harmonics and low tuning. In this paper, a training file is
proposed which was created by recording popular metal guitar ex-
cerpts, with a focus on more specific metal techniques highlighted
by [23], which were not present in the other datasets. These tech-
niques are outlined in Table 1.

The guitars used for the proposed dataset were the Schecter
KM-7 MKIII Artist, the Ibanez RG421 with Bareknuckle After-
math pickups, and the Dingwall NG-2 5-string. When recording
each guitar, the output was connected in series to a true-bypass
Peterson tuner pedal, a Radial J48 active DI box and the micro-
phone input of a Universal Audio Apollo Twin X interface. En-
gaging the -15dB PAD (passive attenuation device) on the DI box
was necessary for the active guitars as the input transformer was
being overloaded, and so it was engaged for all guitars for con-
sistency. The guitar volume/tone potentiometers were first set to
100% (most transparent), and the preamplifier gain was set such
that 10dB of headroom was present when palm-muting heavily.
The UAD Diezel Herbert amplifier simulator [24] was used for
monitoring purposes.This proposed training dataset lasts a total
of 5 minutes and 27 seconds and is henceforth referred to as the
metal-specific training.

4.3. Training Comparison

Table 1 presents musical aspects of the three training sets, where
the genre-specific training files can be seen to have a more ex-
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Figure 1: Signal chain for the amplifier recording process. Signal
levels are annotated to highlight the importance of each block.

Figure 2: Equipment setup for the recording of the amplifier out-
put.

tended range of techniques and notes compared to the general set.
The rock-specific training has the widest frequency range when
considering the exponential sine sweeps and noise samples at the
start of the file.

4.4. Recording the Amplifier Output

The direct output of the Peavey 6505 LEAD channel was recorded
for each of the three DI training files. The recording chain was set
up as per the block diagram in Figure 1, the equipment of which
is shown in Figure 2. A Radial X-Amp active re-amp box was
used to attenuate the line-level audio interface output to instrument
level, with an output impedance of 10kΩ. Typical electric guitar
output impedances are in the range of 5-12kΩ [25] - the values of
which are expected to be seen by the input of a guitar amplifier.
Presenting the correct output impedance is important to ensure the
voltage drop across the amplifier is within nominal levels, in order
for the amplifier to behave as expected.

The Rivera RockCrusher load box was used to attenuate the
high-power output of the amplifier to line level. This is required in
replacement of a loudspeaker cabinet, since powering a vacuum-
tube amplifier without sufficient load can be damaging [26]. As
[13] points out, the type of load may influence the behaviour of
the amplifier differently to a loudspeaker cabinet. Therefore, care
was taken to select a high-quality reactive load box to act as trans-
parently as possible. The load box output impedance of 560Ω [26]
allows for optimal voltage transfer to the line-level input of the
Apollo Twin X (rated at 10kΩ [27]). After a preliminary recording,
the preamplifier gain was increased to compensate for the voltage
loss resulting from headroom provided at earlier stages.

5. SUBJECTIVE LISTENING EXPERIMENTS

Each of the three training sets introduced in Section 4 were used
to train the LSTM-RNN and WaveNet-based CNN, resulting in 6
models of the Peavey 6505. Listening tests were conducted to in-
vestigate the perceptual preference, realism and accuracy of these
models, compared to the real amplifier. The test samples are made

Figure 3: The transfer function used as a static waveshaper to
produce the anchor test samples.

available on the Institute of Sound Recording’s GitHub page1.

5.1. Test Subjects

A total of 21 participants took part in the first three listening tests.
In an anonymous survey, 86% of subjects said they had critically
listened to rock or metal music before (i.e. in studio monitoring
conditions), 76% had previous experience with vacuum-tube gui-
tar amplifiers, and 81% had experience with hardware or software
amplifier simulators.

In the final two listening tests, 16 people took part, all of which
had used a vacuum-tube guitar amplifier before, 94% had used an
amplifier simulator before and 88% had critically listened to rock
or metal music.

All subjects were students of the BSc in Music and Sound
Recording course (Tonmeister) at the University of Surrey, all of
whom received critical listening training as part of their curricu-
lum.

5.2. Test Excerpts

A range of pickups were used to record 8 guitar excerpts as de-
tailed in Table 2. For each pickup, two excerpts from existing rock
and metal songs were chosen with different pitch registers. Playing
techniques were also different between excerpts, which included
variations of the guitar volume control. Acting as an attenuation
device before the amplifier, the volume control can be used to re-
duce the guitar output level to the ‘edge of breakup’ (also known as
breakup point [9]). These test samples were recorded as 44.1kHz,
16-bit integer linear PCM waveform files, and were each 5-8 sec-
onds in length.

An anchor was produced using a static waveshaper (as in [7]),
created using a piecewise transfer function shown in Figure 3. This
transfer function is based on the vacuum-tube-like waveshaper de-
signed by [28], and was intended to be distinguishable from the
real amplifier due to its simplicity.

The 8 DI guitar excerpts were sent through each of the 6 mod-
els, the real amplifier and the anchor waveshaper, resulting in 64
test samples. The models were captured via the WaveNetVA and
Proteus audio plugins in REAPER, and the real amplifier output
was recorded as part of the process in Section 4.4. The output
signals were then convolved with the loudspeaker cabinet IR, and

1https://github.com/IoSR-Surrey/
DNNAmplifierDemos
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Table 1: Information about each of the three training data sets from inspection. The pitch ranges consider the lowest and highest notes
played, excluding harmonic techniques.

Training Data Set Set 1: General [13] Set 2: Rock-specific [18] Set 3: Metal-specific
(proposed)

Excerpt Durations Approx. 10-30s Approx. 1.5s Approx. 5-10s
Pitch Range E1-A#4 (3.5 octaves) E1-C6 (4.67 octaves) C1-C6 (5 octaves)

Picked bass Picked bass Picked bass
Fingerstyle bass High-velocity strumming Pinch harmonics
Slap bass Palm-muting Tapped harmonics
Strummed dead-notes High-pitched monophony Tremolo picking
Fingerstyle arpeggios Double-stops Double-stops
Monophonic notes Low-velocity arpeggios Strummed chords
Staccato chords Full-tone bends Vibrato
Picked arpeggios Rapid monophonic picking Intermod. distortion
Background tone Strummed chords Full-tone bends

Palm-muted scales Hammer-ons/pull-offs
Scales high and low Fast picking runs
Natural harmonics Fast legato
Vibrato Volume roll-off

Techniques

Heavy palm-muting

equalisation was applied (-9.7dB notch filter at 3.8kHz, Q = 19) to
reduce the rate of fatigue of each test subject.

5.3. Experimental Methodology and Statistical Analysis

The experimental methodology involved MUSHRA-style tests [29],
which have been previously used in this context [4, 5, 6]. Since
this work investigated subjective measures beyond model accu-
racy, a reference was not used in tests where this would bias the
subject’s opinion. An ABX test was also used to evaluate model
accuracy, which is recommended for the evaluation of smaller dif-
ferences [30]. The listening tests were conducted inside an acous-
tically treated room in the Institute of Sound Recording at the Uni-
versity of Surrey. The stimuli were presented to subjects via a
Max/MSP patch on a 2019 MacBook Pro, monitored over Audio-
Technica ATH-M40X headphones. Before the listening tests, each
participant was guided through familiarisation, training and blind
grading phases. Subjects were made to familiarise themselves with
all the unlabelled stimuli and the GUI before conducting the test.
During this process, listeners were encouraged to set the monitor-
ing volume to a comfortable level.

The statistical analysis of all MUSHRA-style tests was based
on (non-parametric) Friedman tests [31] and post-hoc Wilcoxon
pairwise signed-ranks tests. Considering that the paper aims to as-
sess the effect of training within each model, and how well each
model performed against the real amplifier, only the following
pairwise tests were run: (a) differences between the 3 LSTM-RNN
models, (b) differences between the 3 WaveNet-based CNN mod-
els, and (c) differences between all models and the real amplifier,
for a total of 12 comparisons. The Bonferroni correction was ap-
plied to adjust for multiple comparisons.

5.4. Experiment 1 - Preference

The aim of the first experiment was to gauge which amplifier the
subjects preferred, be it real or artificial. The test samples were
presented in a mix of drum kit and bass guitar to simulate the lis-
tening conditions the consumer would experience when judging

the guitar recording of a song. The test prompt was worded as:
“Rate your preference of the electric guitar in samples A-G".

5.4.1. Methodology

The test used a MUSHRA-style methodology, but without a la-
belled reference of the real amplifier, so as to account for the pos-
sibility of the real amplifier not being the preferred stimulus. Also,
an anchor was omitted to reduce the compression of results since
the samples appeared to sound very similar. Subjects were asked
to rate 7 test samples (i.e. the 6 models and the real amplifier) side
by side for 4 different excerpts. Each excerpt was presented on a
different page, and each page was repeated once. The scale ranged
from -50 to 50 with -10 to 10 labelled as “Indifferent", -50 labelled
as “This sounds worse than the others" and 50 labelled as “I prefer
this to the others".

5.4.2. Results

The results of the preference test are presented in Figure 4. The
mean scores and 95% confidence intervals for each model and the
real amplifier were each within the -10 to 10 category, labelled “In-
different". A Friedman test revealed that there was a statistically
significant difference between some of the models (χ2(6, N=168)
= 14.409, p = 0.025). However, post hoc Wilcoxon signed-ranks
tests showed that there was no statistically significant difference
between the three LSTM-RNN models (i.e. the three different
training sets) or between the three WaveNet-based models. Simi-
larly, there was no statistically significant difference between each
of the 6 models and the real amplifier.

5.5. Experiment 2 - Realism

This experiment aimed to investigate what subjects believed sound-
ed like a ‘real’ amplifier given their previous experience of vacuum-
tube guitar amplifiers, without a reference. Two MUSHRA-style
listening tests were conducted. The first test asked subjects to rate
how ‘real’ the samples sounded, and the second test asked subjects
to compare the samples to their previous experience of what a real
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Table 2: Information about each of the 8 excerpts used to form the listening test samples. ‘EOB’ refers to ‘edge of breakup’: the lowest of
the gain levels. Under ‘Song Based On,’ the artist is not included for space reasons (full details are provided in the Github repository 1).

Excerpt Pickup Model Pickup
Passivity Song Based On Tuning Pitch

Register THD

A EMG Humbucker Active B.Y.O.B. 0:41-0:46 Drob Db Low Med/High
B EMG Humbucker Active Tears Don’t Fall 0:00-0:06 Drob Db Mid Med
C Fishman Fluence Humbucker Active Death Inside 2:21-2:27 Drop Bb Low High
D Fishman Fluence Humbucker Active Catalyst 1:31-1:39 Drob Db Mid High
E Fishman Fluence Split-coil Active Cry of Achilles 0:32-0:39 Eb Standard Mid High
F Fishman Fluence Split-coil Active My Curse 0:00-0:08 Drop C Mid/High EOB
G Bareknuckle Aftermath Humbucker Passive My Curse 1:01-1:09 Drop C Low High
H Bareknuckle Aftermath Humbucker Passive Buried Alive 4:14-4:20 Standard High High

Figure 4: Means and 95% confidence intervals for the listening
test in experiment 1. The results are averaged across all excerpts
(C, D, E and G).

vacuum-tube amplifier sounds like. Only subjects that had used a
vacuum-tube guitar amplifier before were permitted to participate
in the second experiment. A total of 21 subjects participated in the
first test, while 16 participated in the second test. These samples
were not presented with accompaniment unlike Section 5.4, since
realism should not depend on other instruments - using a mix may
cause unnecessary masking effects.

5.5.1. Methodology

The first test of this experiment asked subjects to “rate samples
regarding how ‘real’ they sound" on a scale of 0-100 labelled from
“This sounds artificial" to “This sounds like a real amplifier". The
test consisted of 8 pages, each of which involved comparing the 6
models and the real amplifier using one guitar excerpt as an input.
The excerpt was randomly changed for each page, using excerpts
A, C, E and G from Table 2 and repeating them once.

The second test asked listeners to “rate each sample based on
how similar it sounds to a real vacuum-tube guitar amplifier". On
each page of the second test, 8 unlabelled samples were compared
(the 6 models, the real amplifier and the anchor). The rating scale
was also 0-100, labelled from “Not similar" to “Sounds the same".
This was completed for 6 excerpts (A, B, C, F, G and H) and re-
peated once, resulting in a total of 12 pages.

Figure 5: Means and 95% confidence intervals for the first listen-
ing test in experiment 2. Asterisks and bars indicate a significant
difference (*: p < .05, **: p < .01 , ***: p < .001 at post-hoc test,
Bonferroni corrected).

5.5.2. Results

The results of the first realism test are shown in Figure 5. A
Friedman test showed a significant difference between some of
the models (χ2(6, N=168) = 35.907, p < 0.001), so post hoc
Wilcoxon signed-ranks tests were performed. There was no statis-
tically significant difference between the LSTM-RNN models. For
the WaveNet-based models, on the other hand, the general model
was significantly more realistic than the metal-specific model (p
= 0.0097, adjusted). When comparing each model with the refer-
ence, the real amplifier was only significantly more realistic than
the metal-specific WaveNet-based model (p = 0.0034, adjusted).

Figure 6 shows the mean realism scores of the second test,
where a Friedman test also returned statistically significant differ-
ences (χ2(6, N=192) = 16.412, p < 0.012). Post hoc Wilcoxon
signed-ranks tests showed no statistically significant differences
between the LSTM-RNN models. Within the WaveNet-based mod-
els, the general model was significantly more realistic than the
metal-specific one (p = 0.0269, adjusted), as was seen in the first
test. For all of the models there was no statistically difference from
the real amplifier.

To examine the effects of the model and excerpt on the mean
realism scores of the second test, Friedman tests were run for each
of the 6 excerpts used. For the results of excerpt F, a Friedman test
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Figure 6: The mean scores of each model with 95% confidence
intervals for the second listening test in experiment 2.

returned a statistically significant difference in realism between the
models (χ2(6, N=32) = 16.162, p = 0.013). Performing post hoc
Wilcoxon signed-ranks tests showed that the rock-specific LSTM-
RNN model was rated as significantly more realistic than the real
amplifier (p = 0.0383, adjusted), and the general WaveNet-based
model was also significantly more realistic than the real ampli-
fier (p = 0.0234, adjusted). For higher-gain excerpts B, C, G and
H, Friedman tests revealed there was no significant differences
between models. Despite the Friedman test for excerpt A show-
ing significance (χ2(6, N=32) = 14.649, p = 0.023), the post hoc
Wilcoxon signed-ranks tests revealed no significant comparisons
when considering the LSTM-RNN models alone, the WaveNet-
based models alone and the 6 models versus the real amplifier.

5.6. Experiment 3 - Accuracy

The final experiment sought to evaluate the models in terms of
perceptual accuracy compared to the (labelled) real amplifier.

5.6.1. Methodology

This experiment first used a MUSHRA-style test which asked sub-
jects to rate the similarity of 7 test samples (the 6 models and a
hidden reference) to a labelled reference of the real amplifier on a
scale of 0 to 100. Subjects were not asked to rate one of the sam-
ples at 100. The excerpts used in this test were B, D, F and H, each
on a different page, repeated once, resulting in a total of 8 pages.

An ABX test was also conducted which gave subjects a la-
belled reference of the real amplifier and two test samples: a hid-
den reference and one of the 6 models. Subjects were tasked with
identifying which of the two samples was the hidden reference for
excerpts A, B, C, F, G and H, randomised and repeated once, re-
sulting in 72 trials.

5.6.2. Results

Figure 7 presents the results of the MUSHRA-style test. The hid-
den reference reached a mean score of just 79% (this motivated
running the ABX test later). A Friedman test revealed that there
was a statistically significant difference between some of the mod-
els (χ2(6, N=168) = 49.019, p < 0.001). Post hoc Wilcoxon

Figure 7: Means and 95% confidence intervals for the first listen-
ing test from experiment 3: similarity to the reference. The results
are averaged across all excerpts (B, D, F and H).

signed-ranks tests showed that the rock-specific LSTM-RNN model
was significantly more accurate than the general LSTM-RNN (p =
0.0109, adjusted). No significant differences were observed within
the WaveNet-based models. The real amplifier was rated as signif-
icantly more accurate than all three WaveNet-based models as well
as the general LSTM-RNN (p ≤ 0.001 in each case, adjusted).

To investigate differences between excerpts, Friedman tests
were run for each excerpt of the MUSHRA-style test which found
that the lowest-gain excerpt F had a significant interaction (χ2(6, N
=42) = 65.812, p < 0.001), while the high-gain and high-pitched
excerpt H did not (χ2(6, N=42) = 3.848, p = 0.697). For excerpt F,
post hoc Wilcoxon signed-ranks tests were run, which found that
both genre-specific LSTM-RNN models were significantly more
accurate than the general LSTM-RNN (p < 0.001 in both cases,
adjusted). Significant differences were also found between the real
amplifier versus the general LSTM-RNN and each genre-specific
WaveNet-based model (p < 0.001 in each case, adjusted).

Figure 8 shows the ABX results, where the 95% and 99% crit-
ical levels are indicated (using the cumulative binomial distribu-
tion). At the 95% confidence level, it can be seen that all mod-
els could be distinguished from the reference. Using 99% confi-
dence, however, the rock-specific LSTM-RNN does not exceed the
critical level which suggests it was very similar to the reference.
According to the cumulative binomial distribution at 95% con-
fidence, there was no statistically significant difference between
the rock-specific and metal-specific LSTM-RNN results. The gen-
eral LSTM-RNN was identified significantly more often than both
genre-specific LSTM-RNN models at α = 0.05.

For the lowest-gain excerpts, B and F, the rock-specific RNN
was the only model not to have been rated as significantly different
to the reference at the 95% confidence level. For the high-gain
and high-pitched excerpt H, however, none of the models could be
distinguished from the reference.

6. DISCUSSION

In terms of preference, the mean scores for all 6 models and the
real amplifier were within the -10 to 10 band (labelled “Indiffer-
ent"). There were no significant differences between the models
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Figure 8: The percentage of correct identifications of the reference
when compared to each model in the ABX test. In this plot, lower
values mean better performance. The dashed and solid horizontal
lines represent the 95% and 99% critical levels, respectively.

within either of the DNN topologies, nor were the 6 models rated
as significantly different to the real amplifier. This suggests that,
despite potential audible differences, the real amplifier was not
preferred over any of the DNN models when accompanied with
bass guitar and drums, for high-gain excerpts C, D, E and G from
Table 2. Therefore, these models seem to be viable as replace-
ments of a real guitar amplifier in a mix.

In one of the realism tests, the metal-specific WaveNet-based
model was significantly less realistic than the real amplifier. There
were no other significant differences in realism between the mod-
els and the real amplifier when considering all excerpts cumula-
tively. This suggests the models were generally realistic-sounding.
The mean realism scores for the real amplifier were low in both
tests (58% and 64%) - it is possible that this was due to subjects
finding the judgement of realism difficult. The training sets did not
drastically affect the realism of the models, which is most likely
due to the fact that the models are already perceived as very real-
istic.

In terms of perceptual accuracy, the hidden reference (real am-
plifier) had a surprisingly low mean score of 79%, despite subjects
being asked to rate the degree of similarity to the labelled refer-
ence. It is possible that this was due to not forcing subjects to rate
at least one sample to 100% and/or to the reference being so close
to the other samples and thus difficult to identify. The real ampli-
fier was rated significantly higher only in comparison to the three
WaveNet-based models and the general LSTM-RNN model in the
MUSHRA-style test. This suggests that the two genre-specific
LSTM-RNN models were perceived with similar accuracy to the
real amplifier, which is supported by the ABX results. The rock-
specific LSTM-RNN was not significantly distinguished from the
reference in the ABX test (at α = 0.01), where it was correctly
identified only 57% of the time, suggesting it was very similar to
the real amplifier. There was no significant difference between the
results of the two genre-specific LSTM-RNN models, which in-
dicates that the metal-specific LSTM-RNN was also perceptually
close to the real amplifier.

It was found that excerpts closer to the ‘edge of breakup’ re-
vealed more differences between the models. For the high-gain

and high-pitched excerpt H, all models were unable to be identified
from the real amplifier in the ABX test, and the MUSHRA-style
accuracy test showed no significant difference between any of the
models. This is supported by the realism results, where none of the
models had significantly lower mean scores than the real amplifier
for this excerpt, suggesting that they were all sufficiently realistic.
For the lowest-gain excerpt F, however, the rock-specific LSTM-
RNN was the only model indistinguishable from the reference, and
it was rated as significantly more realistic than the real amplifier.
The MUSHRA-style accuracy test for this excerpt revealed that
both genre-specific LSTM-RNN models were more accurate than
the general LSTM-RNN, and that the real amplifier was more ac-
curate than three other models. The metal-specific WaveNet-based
model was seen to be significantly less realistic than the general
WaveNet-based model in both realism tests.

7. CONCLUSIONS AND FURTHER WORK

This paper explores the use of two popular DNN topologies for the
modelling of the Peavey 6505 amplifier. Perceptual experiments
were run to evaluate models trained using a general dataset versus
genre-specific datasets, rated in terms of preference, realism and
accuracy.

The real amplifier was not preferred to any of the DNN models
when presented in a mix. The models also successfully emulated
the target amplifier in terms of realism, and one of the models was
even rated as more realistic than the real amplifier itself. Also
considering that the subjects were trained listeners, these results
suggest that the models can already replace the real amplifier in
most music production workflows.

The genre-specific training resulted in an improvement of the
performance of the LSTM-RNN topology both in terms of accu-
racy, and, to a lesser extent, realism. No significant difference
was observed between the three training datasets for the WaveNet-
based models. It is possible that this was due to WaveNet-based
models being more sensitive to the choice of hyperparameters,
which in this experiment were fixed for all training sets.

Results also showed that some excerpts were better than oth-
ers in highlighting differences between models. More specifically,
high-gain and high-pitched excerpts were perceived with the same
realism and accuracy as the real amplifier for all models, while
a lower-gain excerpt on the ‘edge of breakup’ was identified as
different from the real amplifier for 5 out of 6 models. Further-
more, significant differences in accuracy between the training of
the models were highlighted for this excerpt.

Future work will involve investigating whether the results gen-
eralise to different guitar amplifiers and different settings, as well
as investigating the sensitivity of the individual models to hyper-
parameter optimisation and pruning. This may determine whether
the observed effects of genre-specific training translate to opti-
mised models, especially for a WaveNet-based CNN.
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