
Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

PYWDF: AN OPEN SOURCE LIBRARY FOR PROTOTYPING AND SIMULATING WAVE
DIGITAL FILTER CIRCUITS IN PYTHON

Gustav Anthon, Xavier Lizarraga-Seijas and Frederic Font

Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
anthon.gus1@gmail.com | xavier.lizarraga@upf.edu | frederic.font@upf.edu

ABSTRACT

This paper introduces a new open-source Python library for the
modeling and simulation of wave digital filter (WDF) circuits. The
library, called pwydf, allows users to easily create and analyze
WDF circuit models in a high-level, object-oriented manner. The
library includes a variety of built-in components, such as voltage
sources, capacitors, diodes etc., as well as the ability to create cus-
tom components and circuits. Additionally, pywdf includes a va-
riety of analysis tools, such as frequency response and transient
analysis, to aid in the design and optimization of WDF circuits.
We demonstrate the library’s efficacy in replicating the nonlinear
behavior of an analog diode clipper circuit, and in creating an all-
pass filter that cannot be realized in the analog world. The library
is well-documented and includes several examples to help users
get started. Overall, pywdf is a powerful tool for anyone work-
ing with WDF circuits, and we hope it can be of great use to re-
searchers and engineers in the field.

1. INTRODUCTION

Wave digital filters were initially developed by Alfred Fettweis
in the ‘70s and ‘80s in order to digitize ladder and lattice cir-
cuits [1–3]. They have gained popularity in recent years as interest
has grown in virtual analog (VA) modeling of audio and music ap-
plications [4,5]. Many analog audio effect circuits are exceedingly
rare and/or expensive for the majority of music makers, so making
these effects more accessible by faithfully recreating them in the
digital domain has become an important goal of audio engineers
and developers. [6, 7].

Wave digital modeling is a form of white box VA modeling
that takes into account the entirety of a circuit’s internal structure.
A wave digital model of a circuit is composed by replicating each
of the circuit’s elements one by one, and connecting them with
"adaptors", which inform what type of topology is configured [8].
Series and parallel adaptors of course connect elements in series
and parallel and are the most common wave digital adaptors, while
polarity inverters can be considered two-port adaptors, and R-type
adaptors are used for more complicated topologies [9].

The elements and adaptors are arranged in an SPQR tree, with
one element at the root and its children elements organized below
it [10, 11]. This is done by representing the reference circuit as a
graph, in which nodes are circuit nodes and edges are circuit ports.

Copyright: © 2023 Gustav Anthon, Xavier Lizarraga-Seijas and Frederic Font. This

is an open-access article distributed under the terms of the Creative Commons Attri-

bution 4.0 International License, which permits unrestricted use, distribution, adap-

tation, and reproduction in any medium, provided the original author and source are

credited.

Then a graph decomposition algorithm is performed to yield the
SPQR tree. Waves propagate throughout the tree from one wave
digital element to the next to simulate the analog circuit.

Circuit elements are discretized locally and are therefore very
modular as compared to traditional techniques of physical mod-
eling entire circuits. This allows users to swap out components
or change parameters without the need to recompute the entire
system’s transfer function. This also enables users to reuse ele-
ment models in multiple circuits, needing only to change param-
eter values, or occasionally, methods of discretization for stateful
components. WDFs work not with Kirchoff variables like voltage
and current, but rather wave variables, namely ‘incident’ and ‘re-
flected’ waves at each circuit element’s port. All WDF elements
accept an incident wave, and propagate a reflected wave as their
output1. The main work of deriving wave digital models of cir-
cuit elements involves computing the reflected wave based on the
incoming incident wave.

In this paper we introduce a new open-source Python library
for modeling and simulating WDF circuits called pywdf. Sec-
tion 2 provides an overview of related work. Section 3 details the
structure of the library and describes basic functionalities. Section
4 offers examples of circuits built with this library.

2. RELATED WORK

Several libraries for implementing wave digital filters tailored
to audio circuits exist, notably including: Faust framework
wdmodels [12], and C++ libraries chowdsp_wdf [13] and
RT-WDF [14]. These libraries are implemented such that the cir-
cuits can be reliably run and tested in real time. This however
necessitates that a low level language, such as C++, or very spe-
cific knowledge about Faust programming is used to implement
the models. The learning curve of C++ is significantly steeper
than that of higher level and less performant languages, which
makes the barrier of entry quite high for researchers and engineers
to begin experimenting with wave digital filters. This is the cen-
tral motivation for developing this library; there is not currently a
library for modeling wave digital filters in Python, where the pro-
cess of prototyping and programming is much less difficult. As
real time processing of audio in Python results in higher latency,
the library is best suited for prototyping, though real time is still
possible thanks to frameworks like pyaudio2.

Python is also a programming language that is typically

1Some wave digital adaptors accept multiple incident waves and prop-
agate multiple reflected waves, such as R-type adaptors

2https://people.csail.mit.edu/hubert/pyaudio/

DAFx.1

https://www.upf.edu/web/mtg
mailto:anthon.gus1@gmail.com
mailto:xavier.lizarraga@upf.edu
mailto:frederic.font@upf.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://people.csail.mit.edu/hubert/pyaudio/

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

baseWDF

-a : �oat
-b : �oat
-R

P
 : �oat

+connect_to_parent(p: baseWDF) : None
+accept_incident_wave(a : �oat) : None
+impedance_change() : None
+reset() : None
+propagate_re�ected_wave() : �oat

rootWDF

-next : baseWDF

RTypeAdaptor

rootWDF

-up_port_idx : int
-n_ports : int
-down_ports : list
-S_matrix : np.array
-a_vals : np.array
-b_vals : np.array

+r_type_scatter() : None
+calc_impedance() : None
+get_port_impedances() : None
+set_S_Matrix(m: np.array) : None
+get_port_idx(x : int) : int

Diode
-Is : �oat
-Vt : �oat

+set_diode_params() : None
+omega4(x : �oat) : �oat

IdealVoltageSource

-Is : �oat

+set_voltage(Vs : �oat)

DiodePair

RootRTypeAdaptor

+compute() : None

Resistor

+set_resistance(R : �oat)

Capacitor

-C : �oat
+set_capacitance(C : �oat)

Inductor

-L : �oat

+set_inductance(L : �oat)

ResistiveVoltageSource

-Vs : �oat

+set_voltage(Vs : �oat)

SeriesAdaptor

-p1 : baseWDF
-p2 : baseWDF
-p1_re�ect : �oat

-p1 : baseWDF
-p2 : baseWDF
-p1_re�ect : �oat

ParallelAdaptor

Figure 1: pywdf circuit elements UML class diagram

used for research and prototyping as frameworks like numpy3,
scipy4, and matplotlib 5 allow easy access for plotting and
visualizing the behavior of a system. This process is significantly
easier than building and rendering a C++ plugin, opening a DAW
session, and configuring the correct channel strip settings to as-
certain the same information about the system. Python has also
become one of the more popular environments for experimenting
with Machine Learning (ML). Recent works such as [15, 16] have
united the world of wave digital filters and machine learning, so
we believe a WDF library implemented in Python will further fa-
cilitate research and development at the intersection of these two
subjects.

3. STRUCTURE

The pywdf library6 is built following the object oriented paradigm
used in the C++ chowdsp_wdf library7. The base class from
which all wave digital elements and adaptors inherit basic func-
tionalities is called baseWDF. This class initializes variables like
incident and reflected waves, parent elements, and contains func-
tions to probe and calculate the port resistance at each element
and connect elements to one another according to the composition
of the SPQR-tree representing the circuit. Basic wave digital ele-
ments in the repository include resistors, ideal and resistive voltage
sources, capacitors and inductors, 3-port series and parallel adap-
tors and more. Also included is the the diode and diode pair, the
nonlinear behavior of which we model using the reflected wave
equation derived by Werner et al. in [17]:

3https://numpy.org/
4https://scipy.org/
5https://matplotlib.org/
6https://github.com/gusanthon/pywdf
7https://github.com/Chowdhury-DSP/chowdsp_wdf

b = a− 2λVT

[
W

(
RpIs
VT

e
λa
VT

)
+W

(
−RpIs

VT
e
− λa

VT

)]
(1)

Where a is the diode pair’s incident wave, λ is signum(a)
(defined in equation 2), Vt is thermal voltage, W is the Lambert W
function, Rp is port resistance, and Is is the reverse bias saturation
current.

signum(x) =

−1 , x < 0

0 , x = 0

+1 , x > 0

(2)

The thermal voltage is typically about 25.85 mV at room tem-
perature, but depends on the number of antiparallel diodes used in
series, giving us the ability to modify the number of diodes used
in the circuit. While the reverse bias saturation current varies from
diode to diode, we use an Is value of 2.52e-9 which is standard for
silicon diodes such as the common 1N4148. In practice, we em-
ploy the fast approximation of the Lambert W function published
by D’Angelo et al. in [18].

Also included are R-type adaptors, which allow for implemen-
tations of circuits whose topologies cannot be broken down into
strictly series or parallel, such as the bridged T circuit. Addition-
ally, they can be used to implement models of operational ampli-
fiers. We include R-type adaptors that are unadaptable and can
only be used at the root of a connection tree, as well as adaptable
ones that can be used more flexibly. The outputs of R-type adaptors
are computed with scattering matrices, which can be found using
methods from Modified Nodal Analysis [19]. The full structure of
the library’s circuit elements is depicted by the Unified Modeling
Language (UML) class diagram in figure 1, and shows how and
from where each WDF element inherits its variables and methods.

There also exists a Github repository with a Python script to
generate a scattering matrix for a chowdsp_wdf circuit given a

DAFx.2

https://numpy.org/
https://scipy.org/
https://matplotlib.org/
https://github.com/gusanthon/pywdf
https://github.com/Chowdhury-DSP/chowdsp_wdf

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

circuit’s netlist 8. This repository also contains a fork that allows
users to generate a scattering matrix9 compatible with pywdf cir-
cuits.

Lastly we have created a Circuit class from which any
wave digital circuit built using this library can inherit basic func-
tionalities. These functions are useful for research and analysis
and include:

• process_sample() : a function that contains a generic
method to process a single sample of a wave digital circuit

• process_signal() : uses process_sample to pro-
cess entire signals with a circuit

• get_impulse_response() : uses
process_signal() to process a Dirac delta func-
tion and returns the output

• plot_freqz() : uses get_impulse_response()
and takes the Fast Fourier Transform (FFT) to plot the sys-
tem’s magnitude and phase responses

• plot_freqz_list() : allows user to visualize how the
system’s frequency response changes as a parameter is var-
ied. Figure 9 was generated with this function

4. EXAMPLES

In this section we will describe some of the examples offered by
the library such as the Diode Clipper and a Passive All Pass Filter.
Although the library includes additional circuits such as the RCA
Mark II Sound Effects Filter [6] and the Bassman Tone Stack [20,
21], among others.

4.1. Diode Clipper Evaluation

This library was initially developed to thoroughly examine how
effectively wave digital filters can replicate the nonlinear behavior
of an analog diode clipper [22] . We do so by examining frequency
response comparisons, AC transient analysis, and harmonic series
analysis. The Diode Clipper WDF model was constructed by con-
verting the circuit to an SPQR tree as shown in 3. We then instan-
tiate these components in a DiodeClipper class __init__
function, as shown in listing 1. The parameters used to instanti-
ate these components such as the resistance and capacitance are
calculated according to the cutoff value provided by the user.

Listing 1: Instantiating WDF elements of diode clipper

1 self.R1 = Resistor(self.R)
2 self.Vs = ResistiveVoltageSource()
3

4 self.S1 = SeriesAdaptor(self.Vs, self.R1)
5 self.C1 = Capacitor(self.C, self.fs)
6

7 self.P1 = ParallelAdaptor(self.S1, self.C1)
8 self.Dp = DiodePair(self.P1, 2.52e-9,

n_diodes=n_diodes)

8https://github.com/jatinchowdhury18/R-Solver
9https://github.com/gusanthon/R-Solver

Figure 2: Diode clipper circuit.

Figure 3: Diode clipper SPQR tree.

4.1.1. Frequency Response Comparison

We compare the magnitude and phase responses generated by the
pywdf circuit model to those of a SPICE10 circuit model, with the
frequency cutoff at the following values:

Fc = {70, 150, 250, 500, 1000, 2000, 4000, 8000, 16000}[Hz.]
(3)

At each of the following sample rates:

Fs = {44100, 48000, 88200, 96000}[Hz.] (4)

Figure 4: Spice vs pywdf frequency response, with 44.1kHz sam-
ple rate and cutoff frequency at 1kHz

10http://bwrcs.eecs.berkeley.edu/Classes/IcBook/
SPICE/

DAFx.3

https://github.com/jatinchowdhury18/R-Solver
https://github.com/gusanthon/R-Solver
http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Figure 4 shows this frequency response comparison with a
sample rate of 44.1 kHz and a cutoff parameter of 1 kHz. We
observe only slight deviations as the WDF model’s frequency ap-
proaches Nyquist - where its behavior is technically undefined. We
also compute error metrics between the two models using Mean
Square Error (MSE)11 and Error-to-Signal ratio (ESR).

MSE =
1

N

N∑
i=1

(xi − yi)
2 (5)

ESR =

∑∞
n=−∞ |yp[n]− ŷp[n]|2∑∞

n=−∞ |yp[n]|2
(6)

The MSE and ESR results averaged across all parameter
changes for each sample rate are listed in table 1.

Magnitude [dB] Phase [rad]

Sample Rate [Hz] MSE ESR MSE ESR

44100 7.215 1.703 0.001 0.019
48000 6.837 1.324 0.015 0.015
88200 7.035 0.416 0.003 0.003
96000 6.660 0.344 0.003 0.003

Table 1: Averaged MSE and ESR of magnitude and phase across
all parameter changes by sample rate

4.1.2. AC Transient Analysis

A diode clipper typically includes an input gain stage, to raise the
level of the input signal and consequently cause it to be clipped
even harder. We examine how sinusoidal inputs respond to rais-
ing the input gain parameter and show how the signal becomes a
square wave in Figure 5. One can observe that even at negative
input gain values the signal is being saturated, which implies that
the diodes contribute nonlinearities even when the input signal is
not crossing the clipping voltage. Table 2 shows the amount of
total harmonic distortion and noise (THD+N) introduced at differ-
ent input gain levels, which also indicates that negative and small
input gain values result in additional saturation to the input.

Figure 5: AC transient analysis varying input gains.

11https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.mean_squared_error.html

Input gain [dBFS] THD+N [%]
-20 0.017
-15 0.017
-10 0.029
-5 0.437
0 6.897
5 15.519
10 21.859
15 26.425
20 29.611
25 31.978
30 33.559
35 35.055
40 37.115

Table 2: THD+N% introduced at each input gain value with 44.1
khz sample rate and cutoff frequency at 1 khz

4.1.3. Harmonic Series Analysis

We also perform a swept sine analysis as first described by Fa-
rina in [23], which involves feeding an exponentially swept sine
wave across all frequencies below Nyquist into a nonlinear system,
and convolving the output with an inverse filter of the input sweep
to create a multidimensional impulse response (IR). Because it is
a nonlinear system, the diode clipper adds additional frequencies
(harmonics) to its input. The multidimensional IR represents the
impulse response of each of the harmonics introduced by the sys-
tem. The multidimensional IR of the diode clipper is shown in 6,
with each vertical line corresponding to the IR of each harmonic.
We can isolate each individual IR from the multidimensional IR
and take its FFT to visualize each harmonic’s magnitude response,
as shown in figure 7.12 It is interesting to note that the 0th har-
monic has very low magnitude below 20 Hz, which is likely due to
the bandwidth of the sweep tone being limited between 20 Hz and
20 kHz. It is also interesting to note that the bandwidth of each
successive harmonic decreases, and is essentially high-passed fur-
ther and further.

Figure 6: Diode Clipper multidimensional impulse response.

To assess the contribution of each harmonic in terms of the
signal, we reused the idea of the Signal-to-Noise Ratio (SNR) in
this scenario. It drove us to define the Harmonic-to-Signal Ratio
(HSR), that allows us to compare the magnitude level of the 0th-
harmonic (the desired signal) to each higher harmonic.

12Responses were normalized 0 dB

DAFx.4

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Figure 7: Magnitude response of each harmonic.

Harmonic HSR [dB]
0 0.0
1 34.63
2 60.51
3 73.69
4 81.27
5 91.58
6 101.77
7 108.91
8 115.14

Table 3: Harmonic-to-Signal Ratio (HSR) for the first 8 harmon-
ics.

HSRdBi = 2(20 log10(Hi)− (20 log10(H0))) (7)

HSR is defined in Equation 7 13. The measurements of each
harmonic’s HSR can be seen in Table 3. The HSR of the 0th har-
monic (fundamental) is of course 0 dB as it is being compared to
itself. Each successive harmonic’s HSR is greater than its previ-
ous, as the difference between the harmonic and the fundamental
increases as the harmonic increases.

4.2. All Pass Filter

[24] describes a new resistor-capacitor (RC) circuit realization of
a first-order all-pass filter (APF). The implementation is very par-
ticular because the APF scheme is composed of a single grounded
capacitor, and three resistors, one of which is negative. Negative
resistance means acceptance and it is of course not possible in the
real world, but is an interesting experiment when simulating cir-
cuits digitally. This demonstrates that the digital domain allows us
to modify the behavior of analog circuits, for example when each

13https://wikimedia.org/api/
rest_v1/media/math/render/svg/
ed42497b9008934f5bcbab43fc64c4d815b142ee

of the resistors are positive the circuit behaves as a high shelving
filter.

APF is an important filter function for analog processing de-
sign because it provides phase shifting whereas the magnitude is
constant at all frequencies, keeping the amplitude of the input con-
stant over the frequency bandwidth of interest. APFs can be used
to correct undesired phase change as a result of a processing signal
such as the high-pass filtering in a loudspeaker crossover [25].

Figure 8: APF circuit.

This model was first implemented in SPICE and then we built
the netlist of the R-type adaptor with the approach based on a
graph decomposition of the reference circuit [10, 11]. Later we
used R-Solver to compute the scattering matrix that allows us to
calculate the impedance of the R-type adaptor, which was com-
puted without an adapted port. Listing 2 shows the instantiation of
each wave digital component in the APF class __init__ func-
tion.

Figure 9 depicts the frequency response for a list of cutoffs,
that was generated using the plot_freqz_list() command.
We can observe how the magnitude is unaltered while the phase
is more affected by the circuit with a 180° delay in the frequency
components below the cutoff frequency. The phase of the first-
order APF varies from 0 at ω = 0 to -π at ω = ∞ and the pole ωp

DAFx.5

https://wikimedia.org/api/rest_v1/media/math/render/svg/ed42497b9008934f5bcbab43fc64c4d815b142ee
https://wikimedia.org/api/rest_v1/media/math/render/svg/ed42497b9008934f5bcbab43fc64c4d815b142ee
https://wikimedia.org/api/rest_v1/media/math/render/svg/ed42497b9008934f5bcbab43fc64c4d815b142ee

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

and zero ωz frequencies are calculated as [24] indicates,

ωp = ωz =
1

CR
(8)

where C is the capacitance and R the resistance value. Equa-
tion 8 enabled us to implement the set_cutoff method to mod-
ulate the cutoff in our APF-WDF, which may be useful to help
fix unwanted phase shifting. It also can be used to implement a
phasing/flanging effect for music production applications, which
could be achieved by modulating the cutoff frequency with an
LCOscillator, also included in this library.

Listing 2: Instantiating WDF elements of APF

1 # Port B
2 self.R1 = Resistor(self.R1_value)
3

4 # Port C
5 self.R2 = Resistor(self.R2_value)
6

7 # Port D
8 self.R3 = Resistor(self.R3_value)
9

10 # Port E
11 self.C1 = Capacitor(self.C1_value, self.fs)
12

13 # define R-TypeAdaptor
14 self.R_adaptor = PolarityInverter(
15 RTypeAdaptor([self.R1, self.R2, self.R3,

self.C1], self.impedance_calc, 0)
16)
17

18 self.Vin = IdealVoltageSource(self.
R_adaptor)

This APF configuration is unique in that it cannot be real-
ized in the analog domain, because negative resistance cannot be
achieved. We hope that pywdf can further allow users to experi-
ment with physically impossible circuits in the digital domain, ei-
ther by aiming to replicate known filter behaviors, or by tweaking
existing circuits in ways that otherwise could not be done.

Figure 9: Cutoffs in the APF-WDF implementation.

5. CONCLUSIONS AND FUTURE WORK

This paper presents pywdf, an open-source Python library to pro-
totype and evaluate WDFs. The library is available under an
MIT license on Github and it provides examples of implementa-
tion and usage for different circuits. Currently, the library models
each electrical component, such as Resistor, Capacitor, Inductor,
Switch, Diode Pair, Adaptors and Sources. We have shown its
ease of use in prototyping and analyzing digitally modeled analog
circuits, as well as its efficacy in replicating their behavior. Over-
all, we believe pywdf to be a powerful resource with a low barrier
of entry to begin experimenting with virtual analog modeling.

Future work for this project can involve developing additional
circuit elements and models. For example, existing literature dis-
cusses nullors, which are helpful in modeling ideal operational am-
plifiers and transistors [26]. This would allow for much greater
flexibility in building circuits with the library. We also hope to
add support for differentiable wave digital filters, and improved
integration with solving R-type adaptors’ scattering matrices.

Further, while we have presently implemented a tolerance pa-
rameter for the Capacitor model, we would like to add this to more
circuit elements to get more realistic modelling, and include anal-
ysis options on tolerance behavior such as is described in [27].

Additionally, stateful components like capacitors and induc-
tors are only currently implemented as discretized by the bilinear
transform. It would be helpful to add support for additional con-
formal maps such as the forwards and backwards Euler transforms
and others, which are included as parameters for stateful compo-
nents in chowdsp_wdf.

6. ACKNOWLEDGEMENTS

This research was carried out under the project Musical AI -
PID2019- 111403GB-I00/AEI/10.13039/501100011033, funded
by the Spanish Ministerio de Ciencia e Innovación and the Agen-
cia Estatal de Investigación. Many thanks to the great number of
anonymous reviewers! The authors would also like to thank Xavier
Serra and Jatin Chowdhury for sharing their help and knowledge
throughout the process.

7. REFERENCES

[1] A. Fettweis, “Wave digital filters: Theory and practice,” Pro-
ceedings of the IEEE, vol. 74, no. 2, pp. 270–327, 1986.

[2] Alfred Fettweis, “Pseudo-passivity, sensitivity, and stability
of wave digital filters,” IEEE Transactions on Circuit Theory,
vol. 19, no. 6, pp. 668–673, 1972.

[3] Alfred Fettweis and K Meerkotter, “On adaptors for wave
digital filters,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 23, no. 6, pp. 516–525, 1975.

[4] Giovanni De Sanctis and Augusto Sarti, “Virtual analog
modeling in the wave-digital domain,” IEEE transactions
on audio, speech, and language processing, vol. 18, no. 4,
pp. 715–727, 2009.

[5] Mattia Verasani, Alberto Bernardini, and Augusto Sarti,
“Modeling Sallen-Key audio filters in the Wave Digital do-
main,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Pro-
cess, March. 2017, pp. 431–435.

DAFx.6

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

[6] Kurt James Werner, Ezra J. Teboul, Seth Cluett, and Emma
Azelborn, “Modeling and Extending the Rca Mark Ii Sound
Effects Filter,” in Proceedings of the 25-th Int. Conf. on Dig-
ital Audio Effects (DAFx20in22), G. Evangelista and N. Ho-
lighaus, Eds., Sept. 2022, vol. 3, pp. 25–32.

[7] B Psenicka, Francisco J García-Ugalde, and Andrés
Romero Mier y Terán, “Synthesis of the low-pass and high-
pass wave digital filters.,” in ICINCO-SPSMC, 2008, pp.
225–231.

[8] Augusto Sarti and Giovanni De Sanctis, “Systematic meth-
ods for the implementation of nonlinear wave-digital struc-
tures,” IEEE Transactions on Circuits and Systems I: Regu-
lar Papers, vol. 56, no. 2, pp. 460–472, 2008.

[9] Kurt James Werner, Vaibhav Nangia, Julius O. Smith, and
Jonathan S. Abel, “A general and explicit formulation for
wave digital filters with multiple/multiport nonlinearities and
complicated topologies,” in 2015 IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics (WAS-
PAA), 2015, pp. 1–5.

[10] D. Franken, Jörg Ochs, and Karlheinz Ochs, “Generation
of wave digital structures for networks containing multiport
elements,” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 52, pp. 586 – 596, 04 2005.

[11] D. Franken, J. Ochs, and K. Ochs, “Generation of wave digi-
tal structures for connection networks containing ideal trans-
formers,” in Proceedings of the 2003 International Sympo-
sium on Circuits and Systems, 2003. ISCAS ’03., 2003, vol. 3,
pp. III–III.

[12] Dirk Roosenburg, Eli Stine, Romain Michon, and Jatin
Chowdhury, “A Wave-Digital Modeling Library for the
Faust Programming Language,” June 2021, Zenodo.

[13] Jatin Chowdhury, “chowdsp_wdf: An advanced c++ li-
brary for wave digital circuit modelling,” arXiv preprint
arXiv:2210.12554, 2022.

[14] Maximilian Rest, W. Ross Dunkel, Kurt James Werner, and
Julius O. Smith III, “Rtwdf—a modular wave digital filter li-
brary with support for arbitrary topologies and multiple non-
linearities,” in International Conference on Digital Audio
Effects (DAFx-16), Brno, Czech Republic, 09/2016 2016.

[15] Jatin Chowdhury and Christopher Johann Clarke, “Emulat-
ing diode circuits with differentiable wave digital filters,” in
Proceedings of the 19th Sound and Music Computing Con-
ference. Zenodo, Saint-Etienne, France, 2022, pp. 2–9.

[16] Champ C. Darabundit, Dirk Roosenburg, and Julius O.
Smith III, “Neural Net Tube Models for Wave Digital Fil-
ters,” in Proceedings of the 25-th Int. Conf. on Digital Au-
dio Effects (DAFx20in22), G. Evangelista and N. Holighaus,
Eds., Sept. 2022, vol. 3, pp. 153–160.

[17] Kurt Werner, Vaibhav Nangia, Alberto Bernardini, Julius
Smith, and Augusto Sarti, “An improved and generalized
diode clipper model for wave digital filters,” 10 2015.

[18] Stefano D’Angelo, Leonardo Gabrielli, and Luca Turchet,
“Fast approximation of the lambert w function for virtual
analog modelling,” 09 2019.

[19] Kurt Werner, Vaibhav Nangia, Julius Smith, and Jonathan
Abel, “Resolving wave digital filters with multiple/multiport
nonlinearities,” 11 2015.

[20] David T. Yeh and Julius Orion Smith, “Discretization of the
’59 Fender Bassman tone stack,” in Proc. Int. Conf. Digital
Audio Effects (DAFx-06), Sept. 2006.

[21] Jatin Chowdhury, “Wave Digital Circuit Models with
R-Type Adaptors — jatinchowdhury18.medium.com,”
https://jatinchowdhury18.medium.com/wave-digital-filter-
circuit-models-with-r-type-adaptors-39ad0ad658ce, Oct.
2022.

[22] Gustav Anthon, Evaluation of Nonlinearities in a Diode
Clipper Circuit based on Wave Digital Filters, Ph.D. thesis,
Universitat Pompeu Fabra, Sept. 2022.

[23] Angelo Farina, “Simultaneous measurement of impulse re-
sponse and distortion with a swept-sine technique,” Journal
of the Audio Engineering Society, pp. 1–24, Feb. 2000.

[24] Norbert Herencsar, Jaroslav Koton, Kamil Vrba, Shahram
Minaei, and Izzet Cem Göknar, “Voltage-mode all-pass fil-
ter passive scheme based on floating negative resistor and
grounded capacitor,” in 2015 European Conference on Cir-
cuit Theory and Design (ECCTD), 2015, pp. 1–4.

[25] Stanley P Lipshitz and John Vanderkooy, “In-phase
crossover network design,” Journal of the Audio Engineering
Society, vol. 34, no. 11, pp. 889–894, 1986.

[26] Kurt James Werner, “Virtual analog modeling of audio cir-
cuitry using wave digital filters,” Dissertation, Stanford Uni-
versity, Stanford, 12/2016 2016, .

[27] Jatin Chowdhury, “Bad Circuit Modelling Episode 1: Com-
ponent Tolerances — jatinchowdhury18.medium.com,”
https://jatinchowdhury18.medium.com/bad-circuit-
modelling-episode-1-component-tolerances-3ffdbe4e980c.

DAFx.7

	1 Introduction
	2 Related Work
	3 Structure
	4 Examples
	4.1 Diode Clipper Evaluation
	4.1.1 Frequency Response Comparison
	4.1.2 AC Transient Analysis
	4.1.3 Harmonic Series Analysis

	4.2 All Pass Filter

	5 Conclusions and Future Work
	6 Acknowledgements
	7 References

