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ABSTRACT
This paper combines recurrent neural networks (RNNs) with

the discretised Kirchhoff nodal analysis (DK-method) to create a
grey-box guitar amplifier model. Both the objective and subjec-
tive results suggest that the proposed model is able to outperform
a baseline black-box RNN model in the task of modelling a gui-
tar amplifier, including realistically recreating the behaviour of the
amplifier equaliser circuit, whilst requiring significantly less train-
ing data. Furthermore, we adapt the linear part of the DK-method
in a deep learning scenario to derive multiple state-space filters si-
multaneously. We frequency sample the filter transfer functions in
parallel and perform frequency domain filtering to considerably re-
duce the required training times compared to recursive state-space
filtering. This study shows that it is a powerful idea to separately
model the linear and nonlinear parts of a guitar amplifier using
supervised learning.

1. INTRODUCTION

Virtual analogue (VA) modelling [1, 2, 3] is a broad topic that still
offers room to combine different approaches to obtain faithful dig-
ital models of real devices. Approaches to VA modelling are of-
ten divided into “black-box” methods, which require almost no
knowledge of the target device’s inner workings [4]. These meth-
ods are limited because they typically do not allow for simulating
user controls, which are present in most analogue devices.

On the other hand, there are “white-box” VA modelling tech-
niques, which create discretised versions of the actual electrical
circuits and allow for simulation of the behaviour of variable com-
ponents such as potentiometers [5, 6, 7]. Typically, these methods
are based on wave digital filters [2, 8, 9] or nonlinear state-space
representations [10, 11, 12]. Nonlinear white-box models often re-
quire the utilisation of approximation or look-up tables in order to
run efficiently in real time [10]. The overall modelling accuracy
is also affected by the exactness of physical models of nonlinear
components, namely diodes, transistors or vacuum tubes, which
often require fitting to measurements from real components [13].
Furthermore, component values listed in schematics may need to
be optimised using data recorded from the device to account for
inaccurate schematics and component tolerances [14].

With the emergence of the concept of differentiable digital sig-
nal processing [15], recent works have shown that it is possible to
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adapt white-box modelling methods in a deep learning scenario to
either discover unknown values of components in analogue circuit
models [16] or to replace some of the computationally demanding
nonlinear circuit elements with small neural networks [17, 18].

Finally, we can define the “grey-box” approach to VA mod-
elling. The methods that fall into this category require some knowl-
edge of the inner structure of given devices but also rely on mea-
surements [19], such as the state trajectory network method [20].
Various grey-box techniques were previously successfully applied
to create models of guitar amplifiers [21], time-varying effects [22]
or dynamic range compressors [23].

Simulation of vacuum tube guitar amplifiers is among the pop-
ular VA modelling subfields. Numerous works utilising deep learn-
ing methods for black-box guitar amplifier modelling have been
published in the last few years [24, 25, 26, 27, 28]. One way to
adapt these models to emulate user controls is to capture audio
datasets of various control settings and allow the model to learn
the dependencies from data using conditioning [29]. However,
simulating multiple controls with conditioning calls for a reliable
automated method for sampling numerous control combinations,
making this task unsuitable for manual data collection [30].

In this paper, we propose a grey-box model that combines re-
current neural networks (RNNs) for the nonlinear preamplifier and
power amplifier simulation, with a white-box linear state-space
model of a guitar amplifier equaliser section, commonly referred
to as the tone stack [31]. The main contributions of this paper are
as follows. We show that our model needs only a fraction of the
data to learn the tone stack behaviour accurately, when compared
to an RNN baseline model, whilst also generalising far better to
unseen data. Although the differentiable tone stack model was al-
ready presented in [16], we utilise the frequency sampling of the
tone stack state-space model for frequency domain filtering, which
results in considerably faster training times when compared to re-
cursive time domain filtering. In addition, we adapt the discretised
Kirchhoff nodal analysis (DK-method) to efficiently derive multi-
ple state-space filters in a deep learning framework.

The rest of the paper is structured as follows. Sec. 2 describes
the modelled guitar amplifier and the data acquisition process. In
Sec. 3, we describe the differentiable tone stack model, the fre-
quency sampling of the tone stack filter for deep learning purposes,
and a method used for frequency domain filtering. Sec. 4 describes
the proposed neural network model and the hyperparameters used
for training. Sec. 5 presents our experiments. Sec. 6 summarises
the objective and subjective results. Finally, Sec. 7 concludes.

2. MODELLED DEVICE

The device in question is a Marshall JVM 410H vacuum tube am-
plifier. For the channel setting modelled in the work, the circuit
topology consists of a preamplifier followed by a tone stack and a
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Figure 1: Frequency responses of the JVM tone stack model with each control (bass, middle, and treble) varied from 0 to 10.

Table 1: Tone stack settings for evaluation on parameter values
not seen in training. The values are normalised to the range [0, 1]
and denoted by cb for the bass control, cm for the middle control,
and ct for the treble control.

cb cm ct cb cm ct cb cm ct
0.1 0.3 0.7 0 0 1 1 0 0
0.3 0.7 0.1 0 1 0 1 0 1

0.65 0.85 0.35 0 1 1 1 1 0

power amplifier. The preamplifier is controlled by a “gain” knob,
which adjusts the signal level before the tube clipping stages. The
tone stack has a well known topology used in Fender, Vox, and
Marshall amplifiers (FMV), described in Sec. 3.1. Its frequency
response can be altered by three potentiometers, labelled as “bass”,
“middle”, and “treble”. Fig. 1 shows frequency responses of the
JVM tone stack model as each control is varied. After the tone
stack, the signal level is adjusted by a “volume” knob followed by
the power amplifier, which has three controls. A “master” knob
adjusts the signal level before the power tubes, and “resonance”
and “presence” knobs alter the low- and high-frequency content.

2.1. Dataset Description

It has previously been shown that the amount of training data re-
quired for black-box neural guitar amplifier modelling is relatively
low [28]. Thus, we composed a 6-min-long dataset of guitar and
bass audio files of different playing styles and genres. We split the
dataset into three parts: the first 4 min are used for training, and
the remaining 2 min are split in half for validation and testing. All
the sounds were taken from IDMT datasets described in [32, 33].

For the sake of simplicity, we model a single channel of the
amplifier, which is labelled as “OD1” and produces a relatively
high amount of distortion. We further limit ourselves to only mak-
ing the tone stack knobs fully controllable. Therefore, we set the
channel volume to maximum (10) and the gain, master, resonance
and presence to midpoint (5) in all cases. Then, the entire dataset
was processed through the amplifier multiple times with different
settings of the bass, middle, and treble controls. We varied each
knob from minimum (0) to 10 with a step of 2. Each time a single
control was varied, the remaining two were set to 5. This resulted
in 6 different output signals for each control. In addition, we also
recorded 3 output signals, where all knobs were set to 0, 5, and 10.

We captured 9 additional output signals whilst processing only
the 1-min test subset to further evaluate the model performance on
unseen parameter settings. These tone stack settings, normalised
to the range of [0, 1], are shown in Table 1. For the first three output
signals, the tone stack was set to values between the steps used for
capturing the training subset. In the remaining cases, the tone stack
was set to various combinations of extreme values to assess how
well the models were able to generalise the non-orthogonal control

behaviour described in [31].
The recording was carried out in the same fashion as in [29].

The output signals were recorded at a sampling rate of 44.1 kHz
from the speaker output of the amplifier using a Two Notes Tor-
pedo Captor 8 reactive load connected to a line input of an RME
UCX USB audio interface.

3. DIFFERENTIABLE TONE STACK MODEL

We identified the DK-method [5] as a suitable analogue circuit dis-
cretisation technique to implement a differentiable version of the
tone stack model. The DK-method allows an automated derivation
of the state-space model from a list of virtual electronic compo-
nents. We use the version of the DK-method proposed in [12]. In
comparison with the earlier version [5], it allows more efficient
handling of the variable components (potentiometers), which is
useful not only for inference but also for adapting it for deep learn-
ing using PyTorch [34] as shown in Sec. 3.1. In this work, we use
the DK-method only to derive a linear model. For more informa-
tion about modelling nonlinear systems with the DK-method, we
refer to other sources [10, 11, 35].

3.1. Derivation of the Tone Stack Model

The first step is to construct so-called incidence matrices that spec-
ify to which circuit nodes the individual components are connected.
The number of rows in the incidence matrix is equal to the number
of components, and the number of columns is equal to the number
of circuit nodes (excluding the ground node). Entries in each row
are given by positive and negative poles of the components, and
are marked by (+1) and (−1), respectively. The negative pole is
omitted for components connected to the ground node. In the case
of the tone stack model, we need to create five incidence matri-
ces where NR is for resistors, NV for variable resistors, Nx for
capacitors, Nu for the voltage source vin, and No for the output
voltage vout.

Next, we can build the system matrix S0, excluding the vari-
able resistors, defined as

S0 =

(
NT

RGRNR +NT
xGxNx NT

u

Nu 0

)
, (1)

where GR and Gx are diagonal matrices containing the parame-
ter values of each resistor and capacitor respectively. Following
the discretisation scheme from [12], the values in GR are conduc-
tances given by 1

Ri
, and the values in Gx are computed by 2Ci

T
,

where T is the sampling period.
To ensure the system matrix S0 is invertible, we augment the

matrices NR and GR with virtual constant resistors [10], which
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Figure 2: Schematic of the JVM tone stack circuit, where the po-
tentiometers VRi are adjusted by control knobs.

are connected in parallel to the resistors of the potentiometers VR3

and VR4. Consequently, we derive the coefficient matrices

A0 =
(
2GxNx 0

)
S0

−1 (Nx 0
)T − I (2)

B0 =
(
2GxNx 0

)
S0

−1 (0 I
)

(3)

D0 =
(
No 0

)
S0

−1 (Nx 0
)T (4)

E0 =
(
No 0

)
S0

−1 (0 I
)

(5)

and the helper matrices

Q =
(
NV 0

)
S0

−1 (NV 0
)T (6)

Ux =
(
Nx 0

)
S0

−1 (NV 0
)T (7)

Uo =
(
No 0

)
S0

−1 (NV 0
)T (8)

Uu =
(
0 I

)
S0

−1 (NV 0
)T (9)

where 0 and I are zero and identity matrices of appropriate dimen-
sions. Finally, we compute the state-space matrices A ∈ R3×3,
B ∈ R3×1, D ∈ R1×3, and E ∈ R1×1 as

A = A0 − 2GxUx(RV +Q)−1UT
x (10)

B = B0 − 2GxUx(RV +Q)−1UT
u (11)

D = D0 −Uo(RV +Q)−1UT
x (12)

E = E0 −Uo(RV +Q)−1UT
u (13)

where RV ∈ R7×7 is a diagonal matrix, which contains the resis-
tances of the variable resistors given by bVR2 for the bass control,
2(1−m)
2−(1−m)

VR3 and 2m
2−m

VR3 for the mid control, and (1− t)VR1

and tVR1 for the treble control. The coefficients t ∈ [0, 1], m ∈
[0, 1], and b ∈ [0, 1] denote the tone stack potentiometer settings.
The resistances of the volume potentiometer VR4 are derived in
the same way as in the case of VR3. However, they are left static
and define a load for the tone stack circuit. The schematic of the
modelled circuit with numbered nodes is shown in Fig. 2.

To adapt the model to be used in a deep learning framework,
we can easily define trainable coefficients αRi , αVRi and αCi to

0.0 0.2 0.4 0.6 0.8 1.0
cb, cm, ct
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m

,t
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Figure 3: Nonlinear potentiometer tapers.

Table 2: Component values of the JVM tone stack.

Name Value Name Value Name Value
R1 33 kΩ VR2 1 MΩ C1 470 pF
R2 39 kΩ VR3 20 kΩ C2 22 nF
VR1 200 kΩ VR4 1 MΩ C3 22 nF

optimise the component values from Table 2 during the model
training similarly to [16]. We do this because component values
taken directly from the schematic do not precisely correspond to
the values of real components. Additionally, we use a scaled sig-
moid function defined by f(α) = t1 + σ(α)t2, where t1 and t2
are fixed to limit the range in which the component values are ad-
justed. We set t1 = 0.8 and t2 = 0.4 to achieve ±20% tolerance.

The resistances of the variable resistors in RV are also de-
pendent on conditioning vectors cb, cm, and ct, which describe
how the controls were set on the amplifier. The number of el-
ements in a single conditioning vector is given by the number
of audio segments in the training batch of size s. The vectors
cb, cm, and ct cannot be used to directly alter the variable resis-
tances. Thus, we add nonlinear trainable tapers for potentiome-
ters VR1, VR2, and VR3, shown in Fig. 3. The same tapers
were used in [16] to form a two layer neural network defined by
f(x) = w1tanh(w2x+b2)+b1, where tanh is a hyperbolic func-
tion, x is the layer input, and w1–2 and b1–2 are trainable weights
and biases of the respective layers. We found that leaving w1 and
b2 unrestricted does not assure that the mapping output will stay in
the range of [0, 1], which is needed to compute the variable resis-
tances correctly. To solve this, we compute

w1 = 1/[tanh(w2 + b1)− tanh(b1)], (14)
b2 = −w1tanh(b1), (15)

which results in only two free parameters w2 and b1 as described in
[36]. The same work also specifies w1–2 and b1–2 parameter values
for fitting either linear or logarithmic potentiometer tapers that we
use to initialise the parameters of the mapping neural networks.

Since we recorded the audio signals from the amplifier with
various settings of controls, each audio segment in a training batch
has different conditioning values assigned to it due to dataset shuf-
fling. As a result, the number of state-space representations we
need to compute is also equal to s. To achieve this, we exploit
the tensor broadcasting semantics of PyTorch1 and adapt the DK-
method to derive multiple state-space filters efficiently.

If we return to the equations (10)–(13), it can be seen that the
state-space matrices will be different each time the variable resis-
tances in RV change. Since each audio segment in the training

1https://pytorch.org/docs/stable/notes/broadcasting.html
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batch needs to be filtered differently according to the conditioning
vectors cB, cM, and cT, we can create RV ∈ Rs×7×7, which is a
tensor of variable resistances where the first dimension is equal to
the batch size s. In other words, it is a tensor containing the vari-
able resistances corresponding to the conditioning data for each
item in the training batch, which are in turn used to obtain dif-
ferent state-space filters for each audio segment. If we use this
tensor in computation of (10)–(13), we get tensors A ∈ Rs×3×3,
B ∈ Rs×3×1, D ∈ Rs×1×3, and E ∈ Rs×1×1 as a result. This
is relatively simple to implement using PyTorch, as the tensors
will be correctly broadcasted as long as the remaining dimensions
are compatible. Considering that we need to recompute the fil-
ters each time the neural network model parameters are updated,
this approach is much less computationally expensive than deriv-
ing multiple state-space representations sequentially.

3.2. Frequency Sampling of the Tone Stack Filter

Several related works have already described frequency sampling
of infinite impulse response (IIR) filters for deep learning purposes
[37, 38, 39, 40]. Although IIR filters can be applied recursively in
the time domain [41], the finite impulse response (FIR) approx-
imation by frequency sampling allows for much faster training
times [38]. Previous works investigated mainly frequency sam-
pling of second-order sections (biquads). Nevertheless, we can do
the same with state-space filters. Let us consider a single-input
single-output (SISO) discrete system with scalar input u[n] and
output y[n], that is defined by

x[n+ 1] = Ax[n] +Bu[n], (16)
y[n] = Dx[n] +Eu[n], (17)

where A is the system matrix, B is the input matrix, D is the out-
put matrix, E is the feedthrough matrix, and x is the state vector.
To obtain the transfer function of a linear state-space filter, first,
one has to take the Z-transform of (16), which yields

zX(z)− zx[0] = AX(z) +BU(z), (18)
where x[0] represents the initial conditions. Then, the transformed
state vector is given by

X(z) = (zI−A)−1zx[0] + (zI−A)−1BU(z). (19)

The transformed filter output (17) is equal to

Y (z) = DX(z) +EU(z)

= D(zI−A)−1zx[0] + [D(zI−A)−1B+E]U(z).

(20)

If we assume zero initial conditions (x[0] = 0), (20) can be rear-
ranged to obtain equation for the transfer function

H(z) =
Y (z)

U(z)
= D(zI−A)−1B+E, (21)

which can be reformulated to

H(z) =
det(zI−A+BD) + det(zI−A)E

det(zI−A)
, (22)

where det denotes the matrix determinant. Then, we derive a
polynomial-form transfer function from (22) defined by

H(z) =
b0z

m + b1z
m−1 + · · ·+ bm−1z + bm

a0zm + a1zm−1 + · · ·+ am−1z + am
, (23)
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Figure 4: Comparison of the ideal tone stack response with fre-
quency sampled responses using a sampling vector of different
lengths L, showing differences at low frequencies.

where m is equal to the order of the system, and b0–m and a0–m

are the numerator and denominator polynomial coefficients.
To frequency sample a linear state-space filter, first, we con-

sider its frequency response denoted as H(ejω), which can be
frequency sampled at angular frequencies ωk = 2πk/N where
k = 0, . . . , ⌊N/2⌋, and N is the length of the discrete Fourier
transform (DFT). If we set z to ejωk , then we can easily derive
H(ejωk ) from the transfer function H(z). Similarly as in [37],
we can frequency sample H(z) by combining frequency sampled
m-sample delays (z−m)N ∈ C⌊N/2⌋+1 and computing

H(ejωk ) = HN [k] =

∑M
m=0 bm(z−m)N [k]∑M
m=0 am(z−m)N [k]

. (24)

A transfer function and frequency response of a linear state-
space model can be computed using MATLAB or SciPy Python li-
brary functions called ss2tf and freqz, respectively. However,
we need to compute several responses of state-space representa-
tions on a graphics processing unit (GPU) in parallel. To overcome
this issue, we implemented differentiable methods for the PyTorch
tone stack model to derive transfer functions and frequency re-
sponses for any number of SISO state-space filters simultaneously.

A few precautions must be taken when frequency sampling IIR
filters. First of all, a sufficient sampling vector length L must be
used to maintain the fidelity of the frequency response, especially
at low frequencies. We found that L = 2049 is satisfactory for
the tone stack model despite slight inaccuracies below 30 Hz as
shown in Fig. 4. Increasing L above 2049 makes it possible to get
even closer to the ideal response, but it is not necessary for model
training purposes.

A less obvious problem arises from the numerical precision
chosen for deriving the frequency responses. Deep learning li-
braries often use single-precision floating-point numbers for all
computations, which can result in incorrect frequency responses
due to rounding errors. This problem is not straightforward to
detect as, in the case of the tone stack model, the responses are
miscalculated only with particular settings of the virtual poten-
tiometers. A simple solution is to use double-precision numbers
when deriving the polynomial coefficients of the state-space trans-
fer function H(z). The purple dash-dotted line in Fig. 5 represents
an incorrect response of the tone stack model with the controls set
to cb = 1, cm = 0, and ct = 1 when using single-precision.

3.3. Frequency Domain Tone Stack Filtering

To significantly speed up the training process, we use a similar pro-
cedure to [23], where a one-pole IIR filter was applied in the fre-

DAFx.4



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

10 100 1k 10k
Frequency [Hz]

25
20
15
10
5
0
5

M
ag

ni
tu

de
 [d

B]

state-space
single-precision
double-precision

Figure 5: Comparison of the ideal tone stack response with fre-
quency sampled responses using single- and double-precision.

FFT IFFT

tone stack 
model

Figure 6: Frequency domain filtering of an audio sub-segment with
a tone stack frequency response.

quency domain. We use truncated backpropagation through time
(TBPTT) [42] for updating trainable parameters multiple times
when processing longer audio segments. The TBPTT length de-
termines Nin, which is the number of samples of the audio sub-
segments used for training. Each TBPTT batch consists of s au-
dio sub-segments ui[n] that get processed simultaneously during
a single training step. The filtering process for a single audio sub-
segment is depicted in Fig. 6.

First, an audio sub-segment ui[n] of length Nin is inserted
into a buffer of length Nb = 2Nin. Then, we perform a fast
Fourier transform (FFT) on the audio samples ubi [n] stored in the
buffer, and discard the negative frequency components, resulting
in ⌊Nb/2⌋ + 1 complex frequency coefficients Ubi [k]. Next, we
supply the conditioning values cbi , cmi , and cti which affect the
variable resistances of the tone stack model. After all virtual com-
ponents of the tone stack model are updated, we can derive the
state-space representation using the DK-method.

The tone stack transfer function Hi(z) and frequency sam-
pled response HNi [k] is then computed. This is used to perform
an element-wise multiplication of HNi [k] with Ubi [k], which re-
sults in filtered complex frequency coefficients Ŷbi [k]. Finally, we
take the inverse FFT of Ŷbi [k]. Since the beginning of the filtered
buffer ŷbi [n] contains the starting transient, we only keep the last
Nin samples, which allows for processing longer audio sequences
without producing discontinuities in the filtered signal. As a result,
there is no need to apply windowing functions during the filtering
process. Note that we set the buffer size Nb = 4096 in order to
obtain 2049 complex coefficients after performing the FFT so it
matches the length of the frequency sampled response HNi [k].

4. MODEL STRUCTURE AND TRAINING

The proposed grey-box model is composed of three blocks, as
shown in Figure 7. The first block is a long short-term memory

LSTM FC + GRU FC +tone stack 
model

preamplifier power amplifier

Figure 7: Block diagram of the proposed grey-box model, which
uses neural network models for the pre- and power- amplifier sec-
tions and a linear white-box model for the tone stack circuit.

(LSTM) RNN [43] followed by the differentiable state-space tone
stack model described in Sec. 3, and a gated recurrent unit (GRU)
RNN [44]. The RNNs are used for modelling the preamplifier
and power amplifier, respectively. Fully connected (FC) layers are
added after each RNN to transform the hidden state vectors into
single audio samples. We provide a reference PyTorch implemen-
tation, the dataset, and listening examples at2.

The architecture of the RNNs is identical to a previously pro-
posed black-box guitar amplifier model [28]. The hidden state size
determines the accuracy of these models. An extensive hyperpa-
rameter search was conducted in previous works [28, 29] to as-
sess the ideal hidden state sizes. We set the hidden size to 40 for
the LSTM and to 8 in the case of the GRU. These hyperparame-
ters were set empirically after initial training experiments on the
dataset presented in Sec. 2.1.

Note that our grey-box model assumes that the preamplifier,
tone stack, and power amplifier are decoupled in terms of their
interaction. The Marshall JVM 410H has a feedback connection
from the output transformer to the phase splitter, controlled by the
“resonance” and “presence”. We did not investigate how this feed-
back connection affects the interaction between the amplifier sec-
tions.

4.1. Objective Metrics

All models in this work were trained to minimise the Error-To-
Signal (ESR) loss, which has been used extensively for modelling
nonlinear audio circuits [26, 27, 28, 29]. The ESR is given by

EESR =

∑N−1
n=0 |y[n]− ŷ[n]|2∑N−1

n=0 |y[n]|2
, (25)

where y[n] is the target signal, ŷ[n] is the predicted signal, and N
is the length of the training segment.

Furthermore, we use a frequency domain error metric based on
short-time Fourier transform (STFT) from [45] denoted as ESTFT

solely for validation purposes. It is a linear combination of spectral
convergence and log-scale STFT-magnitude error. Contrary to the
ESR, it discards the phase information and provides insight into
how well the models perform regarding spectral similarity. We
utilise this metric because phase differences between the model
output and the target signal can result in high ESR with the model
still performing well perceptually [21].

4.2. Training Hyperparameters

To train the models, we use similar hyperparameters to those pro-
posed in [29]. The training dataset was split into 0.5 s audio seg-
ments. The first 1000 samples of each segment are processed with-
out updating the parameters of the network, which allows for the

2https://stepanmk.github.io/grey-box-amp
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Table 3: Number of trainable parameters, duration of a training
step on a GPU, and a real-time factor (RTF) at a sampling rate of
44.1 kHz for the baseline and proposed models.

Model Type Params. Train. Step (s) RTF
RNN (baseline [28]) 10417 0.16 21.28
TS (tone stack from [16]) 7208 26.59 11.49
TS (proposed recursive) 7208 14.17 19.61
TS (proposed freq. domain) 7208 0.45 19.61

initialisation of the RNN states and the tone stack buffer. The rest
of the samples were processed with TBPTT being applied every
2048 samples. The training batch size was set to s = 80. We
calculated the validation loss every 2 epochs, and the maximum
number of training epochs was set to 350. We applied early stop-
ping with a patience of 15 epochs whilst monitoring the validation
loss. The models were trained with the Adam optimiser with an
initial learning rate of 2× 10−3. The learning rate was decreased
by a factor of 0.5 if the validation loss did not improve for 10
consecutive epochs. The training time of the models before early
stopping varied but generally took approximately 10 to 40 min on
a GPU, depending on the size of the training dataset.

5. EXPERIMENTS

We hypothesise that the white-box tone stack will greatly improve
the ability of the model to generalise to the unseen values described
in Sec. 2.1, especially when only a small number of parameter
values are seen during training. To test this we train models using
different subsets of the training dataset.

As a baseline, we use a fully black-box RNN model from [28]
consisting of an LSTM of hidden size 48 followed by a FC layer.
We use a larger hidden size for the baseline model to compensate
for the fact that our proposed model includes an additional RNN
stage after the tone stack model. The black-box baseline RNN
model receives the conditioning values as additional input chan-
nels, and as such has an input size of 4.

Four different datasets were used for training, with the num-
ber of unique permutations of conditioning values varying from 1
to 21. The smallest dataset contains a single permutation, with all
the tone stack controls set to the midpoint (5). The second dataset
has 2 additional targets, where all the tone stack controls are set to
either 0 or 10. The third dataset includes all the targets from the
second dataset, in addition to cases where each tone stack control
is set to either 0, 2, 8, or 10, whilst the remaining controls are set to
5. This results in a total of 15 tone stack parameter permutations
in the third dataset. Finally, the last dataset includes the second
dataset, as well cases where each tone stack control is varied in
turn to either 0, 2, 4, 6, 8 or 10, whilst leaving the rest of the con-
trols set to 5. This results in a total of 21 unique permutations for
the fourth dataset. Note that we left the nonlinear potentiometer
tapers non-trainable in the case of our TS1 model, as only a single
conditioning value was presented during training.

6. RESULTS

The proposed model has less trainable parameters than the base-
line, however, as shown in Table 3, it is slightly slower to train.
Frequency sampling of the tone stack filter significantly improves
the training times on a GPU. The difference in an average training
step duration is even more pronounced when compared to a pre-

Table 4: Objective results for the baseline and proposed mod-
els. Bold indicates best-performing model. The numbering of the
model names corresponds to the number of unique permutations
of conditioning seen during training.

Test Test Unseen Train. Dataset
Model EESR ESTFT EESR ESTFT Duration (min)
RNN1 0.020 0.793 1.748 2.573 4
RNN3 0.025 0.933 1.446 2.511 12
RNN15 0.017 0.743 0.040 0.953 60
RNN21 0.015 0.693 0.039 0.893 84
TS1 0.011 0.760 0.048 0.854 4
TS3 0.020 0.764 0.023 0.715 12
TS15 0.029 0.780 0.038 0.805 60
TS21 0.028 0.924 0.039 0.955 84
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Figure 8: Further evaluation of the proposed TS1 and TS3 models
on unseen tone stack permutations: (top) time domain and (bot-
tom) spectral errors for (left) bass, (center) middle, and (right)
treble controls.

viously proposed differentiable tone stack model from [16], where
the filtering is applied in the time domain. In addition, the previous
approach uses a different discretisation scheme and does not al-
low direct derivation of the transfer function needed for frequency
sampling.

Furthermore, we measured how long it takes to process 1 s of
audio with a custom C++ implementation of our model expressed
as a real-time factor (RTF) computed according to [18]. An RTF
larger than 1 means the model can process the signal faster than
in real time. The baseline model was found to be negligibly faster
than the proposed model, as shown in Table 3.

Objective metrics for all trained models are shown in Table 4.
In the case of the baseline RNN models, it is clear that the more
tone stack permutations the models see during training, the bet-
ter they perform on unseen permutations. This is evident from
both the time and frequency domain metrics. The RNN21 that
was trained on 84 min of data performed the best in compari-
son to other baseline models. In contrast to this, the proposed
models performed well even when trained on very small datasets.
The TS1 model, trained on just a single tone stack setting (4-
min dataset), outperformed the best-performing baseline model in
terms of STFT error computed on unseen parameter values. The
TS3 performed the best of all the models, producing the smallest
error on unseen data, for both metrics.

As the TS1 and TS3 models were only trained on 1 and 3 tone
stack settings, we may also consider the rest of the training dataset
as unseen, and use this to further evaluate the performance of these
models, as shown in Fig. 8. It was observed during training that for
the models TS15 and TS21, the additional data seemed to impact
the model training negatively. An abrupt increase in the validation
loss occurs after a few epochs, and this behaviour was observed
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consistently across different training runs. One possible explana-
tion could be that the trainable potentiometer tapers used in the
tone stack model might be sensitive to errors caused by manually
setting the tone stack controls on the real amplifier when recording
the dataset.

6.1. Listening Tests

A MUSHRA [46] listening test was conducted to evaluate the per-
ceptual quality of the models. In each trial, participants were pre-
sented with a reference clip that was processed by the guitar am-
plifier being modelled. Participants were asked to rate seven test
conditions on a scale of 0 to 100, based on perceived similarity
to the reference. The test conditions included five neural network
models: 3 black-box RNN models, which were trained using ei-
ther 1, 3, or 21 unique permutations of tone stack parameters, and
2 versions of our proposed grey-box model, trained with either 1
or 3 permutations of tone stack parameters. These were selected
based on the objective results of the previous section. Additionally
an anchor, created by processing the input with a tanh nonlinear-
ity, and a hidden reference, were included in the test.

Fourteen participants completed the listening tests. Two par-
ticipants identified as female and twelve as male. All participants
had experience completing listening tests, and their mean age was
28.5 years. One participant was excluded from the results as they
rated the hidden reference below 90 in more than 15% of the trials.

The listening test was conducted for two different tone stack
settings that the models had not seen during training. Results of
both test scenarios are shown in Fig. 9. First, the tone stack pa-
rameters were set to cb = 0.1, cm = 0.3, and ct = 0.7. In
this case, the conditioning values were in-between the steps used
to capture the training dataset. This represents a case that should
easier for the model to predict accurately. The RNN1 and RNN3
baseline models were rated as Poor and Fair, respectively. Inter-
estingly the RNN3 model, which was trained on more data than
RNN1, performed worse. The RNN21 model, on the other hand,
was rated as excellent as it was trained on a substantially larger
dataset. Our proposed TS1 and TS3 models were both rated as
Excellent, showing that adding the tone stack model greatly im-
proves generalisation, even though the models were trained only
on 4 and 12 min data, respectively.

In the second scenario, the tone stack parameters were set to
cb = 1, cm = 0, and ct = 0. In this case, the RNN models trained
on the small datasets were rated the worst, as in the first scenario.
The RNN21 model trained on the largest dataset was only rated as
Fair, contrary to how it was rated in the first scenario. This shows
that the RNN models must be supplied with additional permuta-
tions of the tone stack parameters to generalise better. Conversely,
the TS1 and TS3 models with the tone stack included were again
rated as Excellent as shown in the bottom half of Fig. 9. The TS3
model trained on 12 min of data was rated slightly worse than the
TS1 model, in contrast to the first test scenario. This also goes
against the objective results, however informal listening tests con-
firm only slight differences in the high frequencies. We encourage
readers to evaluate the models for themselves by listening to the
sound examples provided on the demo page.

7. CONCLUSIONS

In this work we present a grey-box approach for guitar ampli-
fier modelling, which allows for the inclusion of user parameters
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Figure 9: MUSHRA scores with 95% confidence intervals for the
tone stack settings of cb = 0.1, cm = 0.3, and ct = 0.7 (top) and
cb = 1, cm = 0, and ct = 0 (bottom).

whilst requiring minimal training data. The proposed approach can
be applied to many popular guitar amplifiers, as the modelled tone
stack circuit is ubiquitous in the industry. We also demonstrated
how a state-space model of a linear parametric circuit can be im-
plemented using the frequency sampling method, allowing for effi-
cient training within a deep learning framework. A subjective and
objective evaluation of our proposed method demonstrates excel-
lent generalisation to unseen data and excellent perceptual qual-
ity. Future work should validate our approach on other devices as
our study was limited to a single amplifier. Using the DK-method
combined with frequency sampling should also allow for incorpo-
rating other controllable linear circuits into neural network models
of guitar pedals and various analogue effects.

We acknowledge that modelling different guitar amplifiers,
which produce very high amounts of distortion, could result in
the need to use RNNs with larger hidden sizes, thus making the
model more expensive to run in real time. However, recent work
[47] has shown that it is possible to prune the trainable weights
of black-box RNN guitar amplifier models, resulting in a smaller
effective hidden size whilst slightly improving the perceptual mod-
elling quality. It is likely that this method could also be applied to
our grey-box model.
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