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ABSTRACT

Memoryless waveshapers are commonly used in audio signal pro-
cessing. In discrete time, they suffer from well-known aliasing ar-
tifacts. We present a method for applying antiderivative antialising
(ADAA), which mitigates aliasing, to any waveshaping function
that can be represented as a piecewise polynomial. Specifically,
we treat the special case of a piecewise linear waveshaper. Further-
more, we introduce a method for for replacing the sharp corners
and jump discontinuities in any piecewise linear waveshaper with
smoothed polynomial approximations, whose derivatives match
the adjacent line segments up to a specified order. This piecewise
polynomial can again be antialiased as a special case of the gen-
eral piecewise polynomial. Especially when combined with light
oversampling, these techniques are effective at reducing aliasing
and the proposed method for rounding corners in piecewise linear
waveshapers can also create more “realistic” analog-style wave-
shapers than standard piecewise linear functions.

1. INTRODUCTION

Memoryless nonlinearities are commonly used in audio signal pro-
cessing algorithms, as waveshapers and wavefolders used in syn-
thesizers [1–3], to model guitar amplifier distortion [4, 5], ring
modulators [6], as models of electrical elements in virtual analog
modeling (for instance, real electrical components like Shockley’s
diode model [7] or imaginary electrical components [8]), as gain
computers in dynamic range controllers, as utility saturators to re-
strict a signal output to a certain range, etc. Given a continuous-
time input signal x(t), a memoryless nonlinearity f(·) produces a
continuous-time output signal y(t) by

y(t) = f (x(t)) . (1)

In a digital signal processing context, with discrete time index n,
a naive implementation is

y[n] = f (x[n]) . (2)

This naive implementation suffers from one well-known artifact:
aliasing distortion. The nonlinear function f(·) expands the band-
width of the input signal x[n], and if any frequency component
arises that is above the Nyquist rate (half of the sampling rate:
fs/2), it will end up aliased down into the baseband. Although
aliasing is sometimes introduced deliberately as a creative effect
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or to mimic a hardware device with audible aliasing distortion [9],
it is usually considered detrimental and bad-sounding. As such,
audio DSP designers typically use several types of approaches to
mitigate aliasing distortion: 1. Oversampling, 2. Non-oversampled
antialiasing (such as ADAA), and/or 3. Altering the waveshape to
expand the signal bandwidth less. Oversampling is a classic and
effective approach [4, 10], but can be quite costly if a large over-
sampling ratio is needed. Non-oversampled antialiasing is a class
of techniques that include those specialized to waveform synthesis
and for memoryless nonlinearities, including the recent and well-
known Antiderivative Antialiasing (ADAA) technique [11–17]. In
fact, we do not have to choose just one technique, but can often
combine them. For instance, ADAA works best when combined
with modest (at least 2×) oversampling.

If a designer is willing to allow small changes to the shape
of their memoryless nonlinearity, the last option should be con-
sidered quite attractive. First of all, sacrificing a small bit of ac-
curacy for increased sound quality is often a valid tradeoff. Sec-
ond of all, in certain circumstances, smoothing out and/or round-
ing corners on a memoryless nonlinearity is often more “realistic,”
in the sense that waveshapers created with analog electronic cir-
cuits (including diodes, tubes, transistors) typically have very soft
corners, whereas some of the classic techniques for creating dig-
ital memoryless nonlinearities, such as piecewise-linear represen-
tations (PWL) have sharp corners. For this reason, it can be useful
to specify a PWL model augmented with smoothness controls for
each corner. In fact, this approach is commonly used in digital
dynamic range control systems, which typically offer “knee” pa-
rameters on their gain computers.

In this paper, we will present a method for applying ADAA
to any piecewise-polynomial (PWP) waveshaping function. The
special case of a piecewise linear (PWL) waveshaper is discussed,
including how to convert from the more convenient breakpoint rep-
resentation to the standard line-segment representation, for which
ADAA can be applied in the identical fashion. Finally, we intro-
duce a technique for replacing any rounded corners and jump dis-
continuities in a PWL waveshaper with rounded corners, making
it a technique that combines all three of the aforementioned ap-
proaches. This method has a number of attractive features: 1. It’s
parameterized by piecewise line segments and finite jump discon-
tinuities. Jump discontinuities should be attended to, since they ap-
pear commonly in memoryless nonlinearities, such as “dead-zone”
and bitcrushers; 2. It has smooth corners made of finite-order poly-
nomials; and 3. It has controllable finite width of corners and de-
gree of smoothness at splice points.

This method combines the well-known ADAA approach with
aspects of the canonical piecewise linear representations (CPLR)
[18, 19] and the smoothed corners are based on a piecewise poly-
nomial model of certain soft clipper curve, whose smoothness can
be set to an arbitrary level, as introduced and discussed at length
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Table 1: Polynomial coefficients for the piecewise polynomial from
(5) and Fig. 1 and its antiderivative.

j pj,0 pj,1 pj,2 Cj Ĉj Cj Pj,1 Pj,2 Pj,3

0 3 2 0 0 0 5
3

3 2 0

1 0 0 1 0 − 5
3

0 0 0 1
3

2 1
2

0 0 0 − 11
6

− 1
6

1
2

0 0

by Robert Bristow-Johnson, Olli Niemitalo, et al. [20–22], which
stands in as a smoothed approximation to the sign function, and
a related curve which is a smooth approximation of the absolute
value function. The first curve is related to a family of curves
known in the image processing field, including the simplest case,
SmoothStep [23] and higher-order generalizations, and its lowest-
order case is identical to a cubic soft clipper that is well-known in
audio signal processing [24, 25].

The paper is structured as follows. §2 reviews piecewise poly-
nomial (PWP) waveshaping functions and shows how to apply An-
tiderivative Antialiasing (ADAA) to them. §3 details a special case
of the PWP waveshaper, the piecewise linear (PWL) waveshaper,
again showing how ADAA can be performed. §4 shows how to
round the corners of a PWL waveshaper using polynomial seg-
ments, which can be parameterized by a PWL representation, cor-
ner widths, and the order of smoothness enforced at each corner,
again showing how ADAA can be applied. §5 presents several dif-
ferent ways to arrive at the same method for rounding the corners,
based on ensuring smoothness up to a certain degree. §6 gives two
brief case studies. §7 concludes.

2. PIECEWISE POLYNOMIALS WAVESHAPERS

A piecewise polynomial (PWP) with J + 1 segments is given by

f(x) =



p0(x), x < x1

p1(x), x1 ≤ x < x2

· · · · · ·
pJ−1(x), xJ−1 ≤ x < xJ

pJ(x), xJ ≤ x

(3)

each of the J + 1 polynomials has an order Φj and is defined as

pj(x) =

Φj∑
ρ=0

pj,ρx
ρ = pj,0 + pj,1x+ · · ·+ pj,Φjx

Φj . (4)

An illustrative piecewise polynomial

f(x) =


p0(x) = 2x+ 3, x < (x1 = −1)

p1(x) = x2, (x1 = −1) ≤ x < (x2 = 1)

p2(x) =
1
2
, (x2 = 1) ≤ x .

(5)

is shown in the top of Fig. 1.1

1It is worth mentioning two efficient methods for evaluating polynomi-
als: Horner’s method and Estrin’s scheme. Horner’s method uses fewer
operations but Estrin’s scheme is more parallelizable, so the more efficient
one will depend on implementation context. For higher-order polynomials,
it may be more efficient to bake the waveshapes into lookup tables rather
than evaluating the polynomials directly.
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Figure 1: An example of a piecewise polynomial curve (top) and its
first antiderivative (bottom), with constants of integration chosen
to enforce C0 smoothness.

2.1. Antialiasing Piecewise Polynomial Waveshapers

We can antialias any piecewise polynomial using the well-known
Antiderivative Antialiasing (ADAA) method [11], which works by
approximating the process of upsampling, applying a nonlinearity,
and downsampling without actually doing anything at an upsam-
pled rate. For a nonlinearity f(), ADAA produces expressions that
use additions, multiplications, and divisions of various antideriva-
tives F (N)(), where N indicates the antiderivative order. This re-
sults in potential divisions by zero (or near zero, which can cause
numerical issues), which must be dealt with using “escape condi-
tions”: special cases where a small signal linearization that avoids
the problematic division substitutes for the original expression.

The simplest form is first-order ADAA

y[n] =


F (1)(u[n])−F (1)(u[n−1])

u[n]−u[n−1]
, ϵ < |u[n]− u[n− 1]|

f
(

u[n]+u[n+1]
2

)
, otherwise ,

(6)

where ϵ is a very small number (we use ϵ = 10−8) and the second
case is used to escape numerical ill-conditioning issues. Again,
F (1)() is the first antiderivative of f(). u is the input signal.2

The antiderivative of a polynomial of order Φ is another poly-
nomial of order Φ+ 1

P
(1)
j (x) = Cj +

Φj+1∑
ρ=1

pj,ρ−1

ρ
xρ . (7)

2Note that we draw a distinction between the input to the waveshaping
function or its antiderivate (which we always call x) and the input sig-
nal itself, which we call u. This is because the input to the waveshaping
functions or antiderivatives (x) are sometimes filtered versions of the input
signal itself (u), i.e., during the escape condition.
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Figure 2: Naming conventions around the single jth breakpoint,
where ωj is the “double-width” of the curved segment for the cases
of a PWL waveshaper with rounded corners, as discussed in §4.

However, we must be careful in setting the constants of integra-
tion Cj . In general, leaving them at zero will lead to large jump
discontinuities in the antiderivative. Instead, we must set the con-
stants of integration Cj so that the P

(1)
j−1(xj) = P

(1)
j (xj), j ∈

{1, 2, · · · , J}. We can also consider one last degree of freedom,
the “global” vertical offset of the function. This can be set entirely
arbitrarily, since it will cancel out immediately in the numerator of
the antiderivative antialiasing equation (6). We choose it so that
F (1)(0) = 0, mainly for visual appeal on our plots.

To accomplish this, we start with a piecewise polynomial F
(1)

(x)
with all constants of integration zero: Cj = 0, j ∈ {0, 1, · · · , J}.
Next, we form a piecewise polynomial F̂ (1)(x) by first setting
Ĉ0 = 0. Then, for all other values of j ∈ {1, 2, · · · , J}, we
choose Ĉj so that the segments line up with C0 smoothness:

Ĉj = Ĉj−1+

Φj−1+1∑
ρ=1

(
pj−1,ρ−1

ρ
xρ

)
−

Φj+1∑
ρ=1

(
pj,ρ−1

ρ
xρ

)
. (8)

This can be accomplished by finally setting

Cj = Ĉj − F̂ (1)(0), j ∈ 0, 1, 2, · · · , J . (9)

Which finally gives us our polynomial F (1)(x). All of the poly-
nomial coefficients and intermediate steps of finding the constants
of integration for this example PWP curve are shown in Tab. 1 and
the resulting curve is shown in the bottom of Fig. 1.

2.2. An example

Starting with our example piecewise polynomial (5), we can antid-
ifferentate them to form the intermediate polynomial

F
(1)

=


P

(1)
0 (x) = 3x+ 2x2, x < −1

P
(1)
1 (x) = 1

3
x3, −1 ≤ x < 1

P
(1)
2 (x) = 1

2
x, x ≤ 1

, (10)

i.e., one where the unadjusted constants of integration are C0 = 0,
C1 = 0, and C2 = 0.

Using (8), we can form a piecewise polynomial of the an-
tiderivative with no jump discontinuities, where Ĉ0 = 0, Ĉ1 =

− 5
3

, and Ĉ2 = − 11
6

,

F̂ (1) =


P̂

(1)
0 (x) = 3x+ 2x2, x < −1

P̂
(1)
1 (x) = − 5

3
+ 1

3
x3, −1 ≤ x < 1

P̂
(1)
2 (x) = − 11

6
+ 1

2
x, x ≤ 1

. (11)
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Figure 3: An example of a piecewise linear curve (top) and its
antiderivative (bottom), including three versions with spliced-in
rounded corners of “double-width” ω, as discussed in §4. Here
we have ωj = ω,∀j.

Finally, by evaluating F̂ (1)(0) = − 5
3

, we form the actual con-
stants of integration C0 = 5

3
, C1 = 0, and Ĉ2 = − 1

6
and arrive at

the actual constants of integration

F (1) =


P

(1)
0 (x) = 5

3
+ 3x+ 2x2, x < −1

P
(1)
1 (x) = 1

3
x3, −1 ≤ x < 1

P
(1)
2 (x) = − 1

6
+ 1

2
x, x ≤ 1

. (12)

This is now suitable for use in the first-order ADAA equation (6)
or higher-order generalizations.

2.3. Higher-order antiderivatives

Higher-order [13, 26, 27] and other variations [12, 14, 16] on an-
tiderivatives antialiasing algorithms exist, for instance 2nd or 3rd
order ADAA, which involve expressions involving higher order
antiderivatives such as F (2)(x), F (3)(x), etc., as well as more
complex expressions and escape conditions. The process of defin-
ing F (N)(x) from F (N−1)(x) for any order N is identical to the
process of forming F (1)(x) from f(x), so needs not be discussed
in detail here. Because the antiderivative of any polynomial is an-
other polynomial of one higher order, we are guaranteed that we
can analytically produce as many antiderivatives as are required.
For other types of functions, analytic antiderivatives do not always
exist (although they can always be approximated numerically).
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Table 2: Breakpoint locations and extremal slopes and derived slope and offsets for the example curve shown in Fig. 3. The y-values and
σ value associated with jump discontinuities are shaded.

j xj y−j y+j bj mj βj µj αj σj Ĉj Cj Cj Pj,1 Pj,2

0 —— —— —— 1.0 0.0 —— —— —— —— 0 0 0.73 1.0 0.0
1 −0.9 1.0 1.0 −0.8 −2.0 −0.8 −1.0 −1.0 0.0 0 −0.81 −0.08 −0.8 −1.0
2 −0.2 −0.4 −0.4 0.0 2.0 0.0 0.0 2.0 0.0 0 −0.73 0.0 0.0 1.0
3 0.4 0.8 0.1 0.5 −1.0 0.0 0.5 −1.5 −0.35 0 −0.69 0.04 0.5 −0.5
4 1.5 −1.0 −1.0 −1.0 0.0 0.5 −0.5 0.5 0.0 0 0.435 1.165 −1.0 0.0

3. PIECEWISE LINEAR WAVESHAPERS

A special case that often arises is the case of piecewise linear
(PWL) waveshapers. A graphical representation of an example
piecewise linear curve is shown in Fig. 3. These are in fact a spe-
cial case of the previously discussed peicewise-polynomial wave-
shapers, where, again for J breakpoints xj , j ∈ 1, 2, · · · , J and
J + 1 segments, each polynomial segment is just a line segment

pj(x) = pj,0 + pj,1x (13)

To be more specific that it is a line we will call these ℓ(x) and to
match the conventional notation for a line, we will use m for slope
and b for offset. Now, the entire PWL function is given by

f(x) =



ℓ0(x), x < x1

ℓ1(x), x1 ≤ x < x2

· · · · · ·
ℓJ−1(x), xJ−1 ≤ x < xJ

ℓJ(x), xJ ≤ x

(14)

where each line segment is defined by

ℓj(x) = bj +mjxj , j ∈ {0, 1, 2, · · · , J} . (15)

We require that the xj , coordinates be ordered as

x1 < x2 < x3 < · · · < xJ . (16)

It’s often convenient, in defining a PWL function, to not deal
with the slopes and offsets directly, but rather to specify the end-
points of each line segments. A piecewise linear function with J
breakpoints and J + 1 line segments (which may have jump dis-
continuities between them) can be fully specified by

1. the slope of the furthest-left line segments: m0.

2. J breakpoints, j ∈ {1, 2, · · · , J}. They are written in the
form (xj , yj), with a single y coordinate, when there is no
jump discontinuity. They are written in the form (xj , y

−
j , y+

j )
when there is a jump discontinuity, where the superscript
indicates which y coordinate is associated with the (−) or
right (+) line segment. When there is no jump discontinu-
ity, we will still need to refer to the y coordinate associated
with each line segment, but in that case we simply have
y−
j = y+

j = yj .

3. the slope of the furthest-right line segments: mJ .

Again, the x coordinates must be ordered by x1 < x2 < x3 <
· · · < xJ , essentially meaning that none of the line segments may
be vertical—instead, an instantaneous vertical jump should be rep-
resented as a jump discontinuity between two line segments—and
also that the line segments are indexed in increasing order from

left to right. Finally, all quantities should have finite values. These
naming conventions are shown graphically in Fig. 2.

Given this, the slopes m and offsets b are determined from the
breakpoints and extremal slopes by

mj =
y−
j+1 − y+

j

xj+1 − xj
, j ∈ {1, · · · , J − 1} (17)

b0 = y−
1 −m0x1 (18)

bj = y−
j −mj−1xj = y+

j −mjxj , j ∈ {1, · · · , J − 1} (19)

bJ = y+
J −mJxJ . (20)

and m0 and mJ are already given. The resulting slopes and off-
sets for the example piecewise linear curve (Fig. 3) are tabulated
alongside the original breakpoint locations in Tab. 2.

3.1. Antialiasing Piecewise Linear Waveshapers

Applying antialiasing to the PWL waveshaper is done identically
to the more general piecewise polynomial. For this special case,
the antiderivative of the PWL function is a piecewise-quadratic
function, i.e., the order of each line segment in the PWL is Φj = 1,
so the order of the each segment of its antiderivative is Φj = 2 and

P
(1)
j (x) = Cj +

pj,0
1

x+
pj,1
2

x2 = Cj +
bj
1
x+

mj

2
x2 . (21)

The constants of integration are set identically to the PWP case.

4. ROUNDED PIECEWISE LINEAR WAVESHAPERS

Now we will introduce a formulation that splices a rounded cor-
ner function gj(x), j ∈ {1, 2, · · · , J} between each line segment
ℓj−1(x) and ℓj(x). Without yet saying much the exact shape of
these rounded corners, the main quantity that they must be param-
eterized by is the double-width of each corner, denoted by ωj > 0,
which may be different for each corner. These must obey

xj + ωj < xj+1 − ωj+1, j ∈ {1, 2, · · · , J − 1} (22)

essentially guaranteeing that the corners do not overlap and that
the line segments do not shrink to have empty domains.

This representation is given by

f̃(x) =



ℓ0(x), x < x1 − ω1

g1(x), x1 − ω1 ≤ x < x1 + ω1

ℓ1(x), x1 + ω1 ≤ x < x2 − ω2

· · · · · ·
ℓJ−1(x), xJ−1 + ωJ−1 ≤ x < xJ − ωJ

gJ(x), xJ − ωJ ≤ x < xJ + ωJ

ℓJ(x), xJ ≤ x

(23)
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Figure 4: Plots of the sign function sgn (x) and its smoothed
variant s̃K(x) (top left), the absolute value function |x| and its
smoothed variants ṽK(x) (top right), as well as their antideriva-
tives S̃

(x)
1 (bottom left) and Ṽ

(x)
1 (bottom right), all for K ∈

{0, 1, 2, 3, 4}.

where each line segment ℓj(x) is defined as in (15), and where,
still without saying much about their shape, each rounded corner
is given by an equation of the form [18]

gj(x) = βj + µjx+ αjωj ṽj
(

x−xj

ωj

)
+ σj s̃j

(
x−xj

ωj

)
(24)

where

βj = gj(0)− µj |xj | =


y−
j −mjxj , xj < 0

y+
j +y−

j

2
, xj = 0

y+
j−1 −mj−1xj , 0 < xj

(25)

µj =
mj +mj−1

2
, αj =

mj −mj−1

2
(26)

σj =
y+
j − y−

j

2
, j ∈ {1, 2, . . . , J} . (27)

where each slope mj is defined as in (17).
ṽ(x) is a “smooth” approximation of the absolute value

ṽ(x) ≈ |x| =

{
−x , x ≤ 0

x , 0 ≤ x
(28)

and s̃(x) is a “smooth” approximation of the sign function

s̃(x) ≈ sign(x) =


−1 , x < 0

0 , x = 0

1 , 0 < x

. (29)

In the case where ṽ(x) := |x| and s̃(x) := sign(x), the represen-
tation (24) would be identical to the standard PWL representation

(with no rounded corners). The idea of decomposing a corner with
a possible jump continuity into a constant, linear, scaled absolute
value, and scaled sign function comes from the “canonical piece-
wise linear representation” literature [28]. The advantage of per-
forming this decomposition is that we only need to deal with defin-
ing ṽ(x) and s̃(x) once, rather than defining a unique new function
for each corner, and can then shift and scale them appropriately
using the αj , σj , ωj , and xj parameters used in (24)–(27). The
resulting constants for the example piecewise linear curve (Fig. 3)
are tabulated in Tab. 2. Again, we have ωj = ω,∀j for these
curves, where Fig. 3 shows plots for three values of ω whereas the
values in Tab. 2 are calculated for the case of ω = 0.25.

5. DERIVATIONS FOR SMOOTHED CORNERS

We could imagine defining ṽ(x) and s̃(x) in many ways. Here,
we will propose a specific way of defining these functions based
on polynomials that match the values and one or more derivatives
of the linear functions they are spliced to.

Now we will give details on how to derive functions that are
suitable for ṽ(x) and s̃(x). The key concept here is that these
functions are both piecewise polynomials, comprising three seg-
ments each, with the outer two segments as straight lines and the
inner segment, defined on the open interval x ∈ ]−1, 1[, is a poly-
nomial that is designed to match the value and a certain number of
derivatives of the outer segments at the splice points x = ±1.

The smoothed absolute value function is

ṽ(x) =


ṽ−(x) = −x, x ≤ −1

ṽK(x), −1 ≤ x ≤ 1

ṽ+(x) = x, 1 ≤ x

(30)

and the smoothed sign function is

s̃(x) =


s̃−(x) = −1, x ≤ −1

s̃K(x), −1 ≤ x ≤ 1

s̃+(x) = 1, 1 ≤ x

. (31)

ṽ(x) and s̃(x) with no subscripts refer to the entire smoothed ab-
solute value and sign functions, whereas the subscripted versions
ṽK(x) and s̃K(x) refer to the inner polynomial segments. The
subscript K refers to the degree of smoothness—Our goal will be
to choose the polynomial coefficients so that ṽ(x) and s̃(x) have a
specified degree of differentiability CK . Specifically, Ck smooth-
ness means that all derivatives up to order k exist and are continu-
ous. Since ṽ−(x), ṽK(x), ṽ+(x), s̃−(x), s̃K(x), and ṽ+(x) (and
all polynomials) all have C∞ smoothness, this amounts choosing
the ṽK(x) and s̃K(x) coefficients so that their values and first K
derivatives match those of ṽ±(x) and s̃±(x) at x = ±1. For a
given degree of smoothness K, these constraints are:

ṽK(±1) = ṽ±(±1) = 1 (32)
d

dx
ṽK(±1) =

d
dx

ṽ±(±1) = ±1 (33)

dk

dxk
ṽK(±1) =

dk

dxk
ṽ±(±1) = 0, k ∈ {2, 3, · · · ,K} (34)

s̃K(±1) = s̃±(±1) = ±1 (35)
d

dx
s̃K(±1) =

d
dx

s̃±(±1) = 0 (36)

dk

dxk
s̃K(±1) =

dk

dxk
s̃±(±1) = 0, k ∈ {2, 3, · · · ,K} . (37)
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Table 3: Tabulated coefficients for smoothed signum s̃K(x) and absolute value ṽK(x) for the lowest 7 values of K.

K N s1 s3 s5 s7 s9 s11 s13

0 1 1
1 3 1.5 −0.5
2 5 1.875 −1.25 0.375
3 7 2.1875 −2.1875 1.3125 −0.3125
4 9 2.4609375 −3.28125 2.953125 −1.40625 0.2734375
5 11 2.70703125 −4.51171875 5.4140625 −3.8671875 1.50390625 −0.24609375
6 13 2.9326171875 −5.865234375 8.7978515625 −8.37890625 4.8876953125 −1.599609375 0.2255859375

K N v0 v2 v4 v6 v8 v10 v12

0 0 1
1 2 0.5 0.5
2 4 0.375 0.75 −0.125
3 6 0.3125 0.9375 −0.3125 0.0625
4 8 0.2734375 1.09375 −0.546875 0.21875 −0.0390625
5 10 0.24609375 1.23046875 −0.8203125 0.4921875 −0.17578125 0.02734375
6 12 0.2255859375 1.353515625 −1.1279296875 0.90234375 −0.4833984375 0.150390625 −0.0205078125

The polynomials are defined as

ṽK(x) =

Φe∑
ρ=0,2,···

vρx
ρ = v0 + v2x

2 + · · ·+ vΦex
Φe (38)

s̃K(x) =

Φo∑
ρ=1,3,···

sρx
ρ = s1x+ s3x

3 + · · ·+ sΦox
Φo . (39)

Because |x| is an even function, ṽ(x) and hence ṽK(x) must be
even functions, so all of the odd coefficients of ṽK(x) are zero
and its polynomial order Φe must be an even (“e”) positive integer.
Because sign(x) is an odd function, s̃(x) and hence s̃K(x) must
be odd functions, so all of the even coefficients of s̃K(x) are zero,
and its polynomial order Φo must be an odd (“o”) positive integer.

In practice, since both s̃(x) and ṽ(x) may contribute to the
shape of the curve at each corner, we set their orders together by

Φe = 2K, Φo = 2K + 1 . (40)

The first five (K ∈ {0, 1, 2, 3, 4}) instances of ṽK(x) and
s̃K(x) are shown in Fig. 4. Note that the K = 0 case is only
shown as an aid to understanding—it is not actually of any real use,
since it is equivalent to just making a PWL with twice as many line
segments, and does not actually increase the smoothness compared
to the original PWL representation.

Our final task is to come up with the polynomial coefficients
v0, v2, · · · , vΦe and s1, s3, · · · , sΦo of ṽK(x) and s̃K(x).

5.1. Linear algebra

The simplest conceptual approach is to write all of the constraints
from (35)–(37) and (32)–(34) as two systems of equations, which
can each written as a single linear algebra equation and solved with
standard methods (matrix inversion, etc.).

For example, the s̃0(x) setup would be[
1 1
1 −1

] [
s0
s1

]
=

[
1
−1

]
, (41)

and the s̃1(x) setup would be1 1 1 1
1 −1 1 −1
0 1 2 3
0 1 −2 3


s0s1s2
s3

 =

 1
−1
0
0

 . (42)

This process can be repeated to systematically form a linear
equation of arbitrary order, by forming each row of the matrix as

[
1 (±1) (±1)2 (±1)3 · · · (±1)Φo

] (
Dk

)⊤
(43)

where the matrix D represents differentiation

D =



0 1 0 · · · 0 0
0 0 2 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 Φo − 1
0 0 0 · · · 0 0


. (44)

The whole system can then be solved as-is, or we can preferably
enforce the odd symmetry of the smoothed sign function by elimi-
nating the even columns (since the even coefficients are guaranteed
to be zero) and eliminating the even rows (since the constraints at
x = −1 are now redundant, since odd symmetry is enforced).

The process for the smoothed absolute value function is nearly
identical, although the constraints on the right hand side will need
to match those in (32)–(34) instead, and even symmetry is instead
enforced by eliminating the odd columns.

In both cases, the coefficients v0, v2, · · · , vΦe and s1, s3, · · · ,
sΦo of ṽK(x) and s̃K(x) can be found with standard linear alge-
bra, such as matrix inversion. Tabulated coefficients of s̃K(x) and
ṽK(x) for K ∈ {0, 1, · · · , 6} are given in Tab. 3.

5.2. Closed-form

As an alternative to using linear algebra, we can used a closed-
form equation that arises from a recursive construction. Robert
Bristow-Johnson has discussed a soft clipper which is identical to
our smoothed sign function [20–22].

In [21], Olli Niemitalo gives a useful recursive construction

s̃0(x) = x (45)

s̃K(x) = s̃K−1(x) +
(2K)!

4K(K!)2
(1− x2)Kx (46)

=
K∑

k=0

(2k)!

4k(k!)2
(1− x2)kx . (47)
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Figure 5: Chirp response spectrograms showing the effect of
rounding corners and/or applying first-order ADAA.

The coefficients of s̃K(x) are given in closed form by [21]

s2k+1 =
(−1)k(2K + 1)!

4KK!(2k + 1)k!(K − k)!
, k ∈ {0, 1, · · · ,K} . (48)

We can use this same technique to generate the smoothed ab-
solute value function ṽK(x) by recognizing that—in the same way
that |x| is an antiderivative of sgn(x)—the smoothed absolute value
function is itself an antiderivative of the smoothed sign function
s̃K(x), as can be seen in Fig. 4. This means that we can produce
s̃K(x) by first producing ṽK(x) using Niemitalo’s method and
then integrating it. Since these are piecewise functions, we need
to attend to the constants of integration in the same way that we
discussed in §2. The only difference is that in the final step, we
should not have ṽK(0) = 0, but rather ṽK(±1) = 1.

5.3. Shifting polynomials

When we are not applying ADAA, we can shift and scale the nor-
malized corner components ṽK(x) and s̃K(x) without any further
effort, as in (24). However, when we are applying ADAA, we may
prefer to deal with the raw polynomial coefficients directly. In this
case, we need to be able to apply shifting and scaling operations to
the polynomials. Vertically scaling a polynomial is trivial

Ap(x) = Ap0 +Ap1x+Ap2x
2 + · · ·+ApΦx

Φ . (49)

Horizontal scaling is also fairly simple

p(Ax) = p0 +Ap1x+A2p2x
2 + · · ·+AΦpΦx

Φ . (50)

Horizontal shifts are more complicated; we use the synthetic divi-
sion based algorithm from [29].
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Figure 6: Overtone amplitudes for K ∈ {1, 6} for a 5-second-
long 200 Hz sinusoid with an amplitude of 2.0.

6. CASE STUDIES

We will now look at the chirp response for the PWL waveshaper
shown in Fig. 3. Our input signal is a 60 second long logarithmic
sinusoidal chirp from 20 Hz to 20 kHz, with an amplitude of 2.0 to
drive it to hit all of the segments. Fig. 5 shows spectrograms of the
chirp response of the “sharp” PWL waveshaper, a rounded version
(all corners with ω = 0.25), and versions of both with 1st-order
ADAA applied. In all cases, the sampling rate is fs = 44100 Hz
(with no oversampling), and the curve smoothness is K = 2.

The “sharp” PWL waveshaper produces excessive aliasing,
whereas the rounded version has far less, due to generally produc-
ing fewer overtones. For both the “sharp” PWL and rounded cases,
applying ADAA is successful at eliminating most of the aliasing,
coherent with results [11] for other waveshapes presented in the
literature. In practice, due to the inherent filtering of ADAA, it
should be used with at least 2× oversampling, which will mitigate
the filtering as well as adding extra alias suppression.

A second case study looks at what happens when the order of
smoothness K is varied. Fig. 6 shows the strength of the overtones
for a 5-second-long static 200 Hz sine wave with an amplitude of
2.0 as input, fed into the same waveshaper from shown in Fig. 3,
again with ω = 0.25, and with 1st-order ADAA applied. We can
glean a few things from this plot. First, the amplitudes of the lower
overtones are somewhat unaffected by K. Second, we can see
that increasing K raises the amplitudes of the middle-frequency
overtones. Third, increasing K decreases the amplitudes of the
higher-frequency overtones.

7. CONCLUSION

In this paper, we’ve shown how to apply the ADAA technique to
any piecewise polynomial waveshaper, including the crucial step
of manipulating each segment’s constant of integration to ensure
at least C0 smoothness of each antiderivative used. This greatly
expands the class of waveshaping functions that can be used with
ADAA, while also providing a template for how to handle other
piecewise waveshaping functions. We looked specifically into two
special cases: the classic case of piecewise linear waveshaping
functions and a proposed technique for rounding the corners on
a piecewise linear waveshaper using special polynomial corners
that enforce smoothness up to a certain order.

For these smoothed corners, we’ve shown how to derive s̃K(x)
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and ṽK(x) for positive integer K, which enforces CK smoothness
on our rounded corners. If one wanted to use K as a smoothly
controllable parameter, the discrete nature of the set of curves that
make up s̃K(x) and ṽK(x) (as shown in Fig. 4) will be disappoint-
ing. However, there is an easy way to form a set of polynomials
with continuous K with smoothness C⌊K⌋,

s̃K(x) = (⌈K⌉ −K)s̃⌊K⌋(x) + (K − ⌊K⌋)s̃⌈K⌉(x) , (51)

which would allow the corner shape to be varied smoothly.
For the case of the piecewise linear waveshaper with rounded

corners, an obvious question arises: what order of smooothnes
should we choose? Increasing the order of a polynomial wave-
shaper increases the number of overtones it produces, so it may
seem that increasing the order of the smoothness would increase
the number of overtones. However, in fact the number of overtones
in a non-trivial piecewise polynomial waveshaper is infinite. So,
reasoning about the number of overtones is not the right approach.
Thinking instead of the relative amplitudes of the overtones, we
saw in the second case study that increasing the smoothness did
not greatly affect the low-frequency overtones, increased the am-
plitude of middle-frequency overtones, and decreased energy for
the higher overtones. It is hard to say conclusively for all situations
whether this is good or bad—What we can say for sure is that be-
ing able to control the spectral profile in this way is a useful timbral
control that has implications for the amount of aliasing, since sup-
pressing the amplitude of high-frequency overtones (beyond the
Nyquist limit) reduces aliasing. One downside of increasing the
order is that it can increases numerical error in the calculation of
the coefficients and evaluation of the polynomials. In practice, al-
gorithm designers will have to be careful not to create a situation
where this numerical error, which manifests as harsh buzzing, is
audible. So, for now, we can only recommend choosing the order
to taste—a more rigorous evaluation and recommendation could
be the subject of future work.
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