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ABSTRACT

Machine learning approaches to modelling analog audio effects
have seen intensive investigation in recent years, particularly in
the context of non-linear time-invariant effects such as guitar am-
plifiers. For modulation effects such as phasers, however, new
challenges emerge due to the presence of the low-frequency os-
cillator which controls the slowly time-varying nature of the ef-
fect. Existing approaches have either required foreknowledge of
this control signal, or have been non-causal in implementation.
This work presents a differentiable digital signal processing ap-
proach to modelling phaser effects in which the underlying control
signal and time-varying spectral response of the effect are jointly
learned. The proposed model processes audio in short frames to
implement a time-varying filter in the frequency domain, with a
transfer function based on typical analog phaser circuit topology.
We show that the model can be trained to emulate an analog ref-
erence device, while retaining interpretable and adjustable param-
eters. The frame duration is an important hyper-parameter of the
proposed model, so an investigation was carried out into its effect
on model accuracy. The optimal frame length depends on both
the rate and transient decay-time of the target effect, but the frame
length can be altered at inference time without a significant change
in accuracy.

1. INTRODUCTION

A broad class of audio effects found in almost all genres of popu-
lar music is that of time-varying modulation effects, and includes
phasing, flanging, chorus, and tremolo. Model-based digital im-
plementations of these effects are straightforward [1], but many
musicians prefer the timbre and character of the original analog or
electro-mechanical devices used to create these effects, and these
may be considerably more difficult to model. Circuit-based simu-
lations [2, 3] can produce physically accurate results but are highly
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optimized to a specific device, and require complete knowledge of
the circuit and its component values.

In general, modelling of audio effects using machine learning
has become an active area of research in recent years, with a par-
ticular focus on modelling non-linear time-invariant effects such as
guitar amplifiers and distortion pedals. Approaches in modelling
these systems include fully black-box methods using recurrent or
convolutional neural networks (RNNs / CNNs) [4, 5], as well as
grey-box models which use some prior knowledge of the refer-
ence system, such as differentiable state-space models [6, 7] and
differentiable DSP-based models [8, 9]. Modelling of effects with
time-varying input-dependent behaviour such as dynamic range
compression has also been explored through the use of CNNs with
long receptive fields [10] and temporal feature-wise linear modula-
tion [11]; as well as a differentiable DSP model proposed in [12].
Modelling of time-varying modulation effects presents a unique
challenge due to the modulation of system behaviour by a low
frequency oscillator (LFO). The deep-learning approach proposed
in [13] can emulate a wide range of effects, however the use of
bi-directional long-term short-memory networks (LSTMs) makes
the model non-causal and therefore not suited for real-time use.
Wright et al. [14] proposed a real-time model for phasing and
flanging effects using RNNs, but required manual measurement
and estimation of the LFO prior to training as this was an input to
the model. Earlier work by Kiiski et al. [15] proposed a grey-box
model of phasing, but in which no machine learning was used.

This work presents a differentiable DSP model of a phaser ef-
fect that can be trained through gradient descent to jointly learn the
underlying LFO signal and the time-varying spectral response of
an analog reference pedal. The model utilises frequency domain
approximations of IIR filters to accelerate training times, as has
been employed in [9, 12]. Through experiment, we investigate the
conflicting demands of time and frequency resolution when using
this method in the context of time-varying effects.

The paper is structured as follows: Section 2 provides back-
ground on analog and digital phasing effects; Section 3 outlines
the proposed model; Section 4 describes the target systems and
data; Section 5 describes the experimental procedure and results;
and Section 6 concludes the paper with an outlook on areas of fu-
ture work. Source code and audio examples are provided at the
accompanying web-page [16].
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2. ANALOG AND DIGITAL PHASE SHIFTERS

The phaser is a time-varying filter effect in which the phase of an
input signal is subject to a periodic modulation and combined to-
gether with the ‘dry’ (uneffected) signal to create audible notches
in the frequency spectrum [17]. The movement of these notches
with time gives the characteristic perceived sweeping effect. The
phasing effect is often confused with flanging, and indeed both ef-
fects are caused by modulating notches in the spectra. The key
difference is that a flanger generates an infinite series of harmoni-
cally spaced notches, whereas the phaser response has finite non-
uniformly spaced notches [18]. Furthermore, implementations of
phasers and flangers differ both historically and in present day
commercial products. Originally, the flanging effect was created
by playing two tape machines in near unison with a small variable
time delay between the two reels [19]. Nowadays, flangers are
typically implemented using time-varying digital comb filters, or
‘bucket-brigade’ delay lines in analog pedals. In contrast, phasers
create phase shifts through cascaded all-pass filters, in which break
frequencies are modulated by a low-frequency oscillator (LFO).

Digital phaser effects are usually implemented as linear time-
varying signal-based models, in which the all-pass filters are discrete-
time approximations of idealised all-pass filters [1, 18, 20]. The
motivation of this work is to explore whether such a model can
be embedded in a machine learning framework to emulate the re-
sponse of an analog phaser pedal. The continuous and discrete
time signal processing concepts of phasing, which underpin the
proposed model, are outlined in the remainder of this section.

2.1. Continuous-time phasing

We will examine phasers of the topology shown in Figure 1 com-
posed of a cascade of K identical first-order all-pass filters. (In
many practical implementations of the phaser, K = 4 [18], but
other choices of K have been employed [15].) The continuous-
time transfer function of each such first-order section is [18]:

A(s) =
s− ωb

s+ ωb
(1)

where s = σ+ jω is the complex frequency and ωb ≥ 0 is known
as the break-frequency of the all-pass filter. Because A is all-pass,
for real frequencies s = jω it may be written as A = ejΘ, where:

Θ(ω) = π − 2 arctan (ω/ωb) . (2)

From (2) it can be observed that ωb is the frequency at which
Θ(ωb) = π/2. Furthermore, the all-pass filter inverts DC, and
the phase response tends to zero as ω → ∞.

Figure 1: A typical phaser structure in continuous time.

The cascade arrangement in Figure 1 includes a through path
with gain g1, and a feedback path with gain g2, with 0 ≤ g2 < 1.

Figure 2: Root locus plot, for g1 = 1, and for for g2 between
0 (open loop, indicated by circles) and 1 (indicated by crosses).
Pole locations are indicated by blue lines, and zero locations by
yellow lines. The real frequency −ωb (where here, ωb = 2π ·1000
rad/s) is indicated by a dashed line.

The following transfer function results:

H(s) = g1 +
AK

1− g2AK
. (3)

The poles s = ξk, and zeros s = ηk, k = 0 . . . ,K − 1, are:

ξk = ωb
1+λk

1−λk
where λk =

ej2πk/K

K
√
g2

(4a)

ηk = ωb
1+βk

1−βk
where βk = K

√
g1

1−g1g2
ejπ(2k+1)/K .(4b)

Figure 2 shows a root locus plot of the pole and zero trajectories
for 0 ≤ g2 ≤ 1, and when g1 = 1. Under open loop (g2 = 0)
conditions, two notches are located on the non-negative imaginary
axis. As g1 → 0 the zeros move away from the imaginary axis and
as such, parameter g1 controls the perceived depth of the phaser
effect. Under fully closed loop conditions, two poles are located
on the non-negative imaginary axis (one at DC).Variations in the
transfer function magnitude |H| with both g1 and g2 are shown in
Figure 3.

Figure 3: Magnitude response for H , under open-loop conditions
at left, for different values of g1, as indicated, and under closed-
loop conditions at right, for g1 = 1, and different values of g2, as
indicated. As before, ωb = 2π · 1000 rad/s.
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2.2. Discrete-time phasing

The continuous-time transfer function (1) can be approximated in
discrete-time via the bilinear transform to give the discrete-time
all-pass section, Ad(z), defined as:

Ad(z) =
p− z−1

1− pz−1
where p =

1− tan(ωbT/2)

1 + tan(ωbT/2)
.

(5)
Here, T = 1/Fs is the sampling period, for sample rate Fs in
Hz. The corresponding discrete-time phaser is shown in Figure 4.
The discrete-time transfer function Hd(z) of K cascaded all-pass
sections, including the residual connection and feedback loop is:

Hd(z) = g1 +
AK

d

1− g2z−ϕAK
d

. (6)

Note that a digital delay z−ϕ, ϕ ∈ Z+ has been included in the
feedback loop. Without this, a delay-free loop would be present in
the resulting difference equation. Efficient modelling of delay-free
loops found in phaser pedals has proven challenging: the state-
space model of a phaser pedal presented in [3] required a Newton-
Raphson solver at run-time; and Kiiski et al. reported that the
fictitious delay line in their DSP model (ϕ = 1) resulted in per-
ceptual differences in the feedback effect when compared with the
analog reference device [15]. The effect of the delay line on the
magnitude response of the system can be seen in Figure 5. It is
clear that the fictitious delay line in the feedback loop drastically
changes the magnitude response for high-frequencies, and should
ideally be avoided in virtual analog models of phasers.

Figure 4: A typical DSP phaser structure.

2.3. Time-varying behaviour

In analog phase shifters, the break frequency of the all-pass sec-
tions, ωb, is periodically modulated by a sub-audio rate LFO, typ-
ically with frequency in the range 0.05Hz to 5Hz. The mapping
between LFO voltage and break frequency is often nonlinear and
asymmetrical: for example, in the MXR Phase 90 the LFO varies
the voltage across JFETs which in turn alters the break frequency
of the all-pass [3]. Certain devices, such as the Uni-Vibe and its
replicas, are optical: the LFO varies the voltage across a light
source (an incandescent bulb in original units [21]) surrounded by
light dependent resistors (LDRs). The resulting fluctuation in cur-
rent through the LDRs controls the all-pass break frequencies. Ac-
curate prediction of the LFO characteristics (including fundamen-
tal frequency and waveshape) are therefore critical to the quality
of discrete-time emulations of such effects, including phasers.

Figure 5: Comparison of magnitude responses of continuous-time
(CT) and discrete-time (DT) phaser models, with constant param-
eters ωb = 2π·1000 rad/s, g1 = 1.0, g2 = 0.9, and T = 1/44100
s. Distinct cases of the discrete-time model without (ϕ = 0) and
with (ϕ = 1) a fictitious delay are illustrated.

3. MODELLING METHOD

This section outlines the proposed model of a differentiable phase
shifting algorithm which, given input-output audio recordings of
a reference device, can be trained to emulate the time-varying be-
haviour. Consider an arbitrary phase-shifting device that has been
sampled in discrete time as:

y[n] = f(x[n], θ[n]) (7)

where x is the input signal, y is the output signal, θ are the time-
varying parameters of the system, n is the sample index and f is a
linear function of x. We seek to develop a model of the form:

ŷ[n] = g(x[n], θ̂[n]) (8)

whose output ŷ[n] is perceptually indistinguishable from y[n]. The
function g is assumed differentiable so that the model can be trained
using gradient descent to find model parameters θ̂ that minimise an
objective loss function L(y, ŷ). The proposed model architecture
is shown in Figure 6.

3.1. Frame-based processing

Utilising frame-based spectral processing [22, 23], the proposed
model assumes that the target phaser can be treated as a linear
time-invariant (LTI) system over the duration of a short frame of
length W seconds. Suppose that an input audio signal x[l] of
length L samples is segmented into Nf = ⌈L/H⌉ frames of
length N = ⌊WFs⌋ with hop-size H samples. (The resulting
frame rate is Ff = Fs/H in Hz.) The mth frame, m = 0, . . . , Nf−
1, is defined as the N×1 column vector xm = [x[mH], . . . , x[mH+
N − 1]]T . The short-time Fourier transform vector Xm, m =
0 . . . , Nf − 1 is derived from xm through windowing and Fourier
transformation as follows:

Xm = UQxm . (9)

Here, Q = [W Z]T is an N ′ × N windowing matrix, where
where N ′ is the DFT length. It includes the diagonal N × N
matrix W, containing samples of the Hann window on the diago-
nal, and an N × (N ′ −N) all-zero matrix Z implementing zero-
padding. U is an N ′ × N ′ DFT matrix. At each frame, spectral
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FFT Overlap-
addIFFTWindow

ESR

Figure 6: Structure of the proposed model. Black arrows indicate
signal flow, with magenta indicating the flow of gradients to the
learnable parameters. The blue and yellow boxes indicate opera-
tions in the frequency domain and time domain respectively. The
subscript m denotes parameters varying at the frame rate, with
all other parameters held constant for the duration of a training
epoch. Parameters in magenta are updated once per epoch by the
optimizer.

processing is applied via element-wise complex multiplication in
the frequency domain, followed by an inverse Fourier transform,
truncation and windowing to yield the N × 1 output vectors ym,
m = 0, . . . , Nf − 1:

ym =
1

N ′Q
TU∗HmXm . (10)

Here, Hm is an N ′ × N ′ diagonal matrix containing values of a
transfer function (incorporating Hermitian symmetry) at frame m
on its diagonal. U∗ is the conjugate transpose of the DFT matrix
U. Finally, the output time series ŷ[l] is obtained from the frames
ym through an overlap-add procedure, with hop size H . It can
be shown that for Hm = I, exact reconstruction of the input sig-
nal can be obtained if N/H is an integer greater than two—this
property is known as constant-overlap-add and is enforced in the
proposed model. Considering the transfer function in (10) to rep-
resent a digital filter with M ∈ Z non-zero taps, then the DFT
length must be N ′ ≥ N +M −1 to avoid temporal aliasing in the
output frames. For IIR filtering (where M → ∞), some degree
of temporal aliasing is inevitable but can be practically suppressed
by choosing M as the 60dB decay time (in samples) of the filter.

In this work the decay time of the target system was not known,
but we found a DFT length of N ′ = 2⌈log2(N)⌉ to be sufficient to
train the models.

3.2. LFO generator

The proposed model has an LFO module which governs the time-
varying behaviour of the spectral processing. The LFO produces
samples at the frame rate, Ff , and is defined as the real part of a
damped complex exponential:

sm(za, zb) = Re(zbzma ) = |zb||za|m cos(m∠za + ∠zb) (11)

where za, zb ∈ C are the complex frequency and complex am-
plitude respectively. Hayes et al. showed that Wirtinger’s calcu-
lus can be used to compute the partial derivatives of real-valued,
complex-variable functions such as (11) to enable sinusoidal fre-
quency estimation by gradient descent [24]. In this work we extend
this method to include a learnable starting phase and amplitude
(defined by zb). The Wirtinger derivatives of (11) are:

∂sm
∂za

≜
1

2

(
∂sm

∂Re(za)
− j

∂sm
∂Im(za)

)
=

mzbz
m−1
a

2
(12a)

∂sm
∂zb

≜
1

2

(
∂sm

∂Re(zb)
− j

∂sm
∂Im(zb)

)
=

zma
2

. (12b)

In the model implementation, the LFO parameters were initialised
to:

za = 0.7 exp(jζ/Ff ), zb = 1.0 (13)

where ζ is a random number sampled from a standard normal dis-
tribution. The damped amplitude envelope was only applied dur-
ing training; during inference za was normalised to the unit circle
to give a lossless LFO.

3.3. Multi-layer perceptron waveshaper

The output of the LFO generator is passed through a multi-layer
perceptron (MLP) to allow the model to learn non-sinusoidal con-
trol signals like those described in Section 2.3. The conceptual
motivation for this module was to emulate the linear and non-linear
mapping of the LFO signal (in volts or amperes) to the break-
frequencies of the all-pass filters (in rad s−1) in an analog phaser
device. Therefore we treat the output of the MLP as the model’s
prediction of the normalised time-varying break-frequency signal,
such that the all-pass parameter is given by:

pm =
1− tan(dm)

1 + tan(dm)
where dm = MLP(sm, γ) , (14)

with γ being the MLP parameters. The MLP consisted of three
hidden layers; with 8 neurons per layer; hyperbolic tangent acti-
vation functions in the hidden layers; and linear activation in the
output layer. The input and output features were scalar, based on
the assumption that all K all-pass filters are identical in the refer-
ence device.

3.4. Model transfer function

The frame-dependent transfer function of the model has the form:

hm ≜ diag(Hm) = h(1) ·
(
g1 +

h(2) · am

1− |g2|z−I(ϕ)ϕ · h(2) · am

)
(15)
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where am is the frame-dependent all-pass kernel:

am =

(
pm − z−1

1− pmz−1

)K

(16)

and z is the N ′- element vector z = [e
2πj(0)

N′ , . . . , e
2πj(N′−1)

N′ ]T .
(Here and elsewhere in this section, operations on vectors are as-
sumed to be applied element-wise.) The parameters g1, g2, ϕ ∈ R
retain their physical meanings from Section 2 but are now ini-
tialised as learnable parameters of the model. I(·) is the Heavi-
side step function and was included to prevent the model learning
a non-casual transfer function. The number of all-pass filters is a
hyper-parameter and was fixed for all experiments to K = 4. The
model includes two frequency domain representations of bi-quad
filters, given by:

h(i) =
b
(i)
0 + b

(i)
1 z−1 + b

(i)
2 z−2

1 + a
(i)
1 z−1 + a

(i)
2 z−2

(17)

where b
(i)
0 , b

(i)
1 , b

(i)
2 , a

(i)
1 , a

(i)
2 ∈ R are the learnable filter param-

eters for the ith biquad, i = 1, 2. These kernels were included
to account for any further LTI filtering that an analog phaser might
impart in addition to the core phasing effect described in Section 2.
For example, low-pass filtering, DC blocking or gain adjustment.

3.5. Loss function

The proposed model uses the error-to-signal ratio (ESR) as the
objective loss function during training:

L(y, ŷ) =
∑L−1

l=0 (y[l]− ŷ[l])2∑L−1
l=0 y[l]2

(18)

where L is the length of the training data in samples. This loss
function has been widely used in black-box and grey-box mod-
elling of other audio effects [5, 12, 14], but the strict time-alignment
required by (18) introduced some interesting challenges when it
came to training the proposed model. Because the frequency and
phase of the LFO are unknown parameters, the training data can-
not be arbitrarily split into short segments (as is common when
using long audio sequences as training data [5, 11]). For example,
even if the initial random frequency guess was precisely correct,
the model would ‘see’ a different starting phase for each segment
(unless the segment length happened to be an integer multiple of
the LFO period). In initial experiments, this phase discrepancy was
accounted for using the current estimate of LFO frequency, but this
caused noisy optimizer updates and convergence issues when the
segment length was shorter than one LFO period in the target data.

This presents a dilemma in training this model: we need a suf-
ficient duration of training data to capture the slowly time-varying
features in the target system, but are constrained to training with
single-batch gradient descent, meaning the time taken for one op-
timizer step increases linearly with the length of training data. The
proposed solution to this problem was to use a short, spectrally-flat
training signal. Details of this signal are outlined in Section 4.

3.6. Training details

All models were trained on audio with a sample rate of 44.1 kHz
using an Adam optimizer [25] with an initial learning rate of 10−3.
Models were trained for a maximum of 5000 epochs on a NVIDIA

Titan-X GPU. The training times varied depending on the length of
training data and window size. For example, for an audio sequence
of 10 s the training times were ∼3 hours and ∼16 hours for win-
dow lengths of 160ms and 10ms respectively. It is important to
note that early designs of the proposed model were implemented
in the time-domain and trained via back-propagation through time,
but training times were deemed too slow to pursue this approach
further (∼24 hours for 1000 epochs on 1s of training audio). The
prohibitive training times of IIR filters has been reported in previ-
ous work [9] [12].

3.7. Model inference

In this work, at model inference we use the same algorithm as in
training (i.e. using frame-based spectral processing). This has the
limitation of introducing a minimum latency of W seconds into the
system, which may be unsuitable for real-time use. A time-domain
implementation using IIR filters could conceivably be derived via
inverse z-transform of the system transfer function (15), but this is
left as a task for future work. The handling of the possibly non-
integer delay-line length ϕ would require some consideration, but
could be implemented with an all-pass filter in the feedback loop
shown in Figure 4.

4. TARGET SYSTEMS AND DATASETS

A custom dataset was collected consisting of 60s of a synthetic
chirp-train signal followed by 60s of direct-input (DI) guitar record-
ings. The chirp-train signal was used as the input signal for model
training; whereas the guitar recordings were reserved for testing.

4.1. Synthetic training signal

The chirp-train signal was synthesised as an impulse train with
period 30ms passed through a cascade of 64 all-pass filters (5)
with p = 0.9. This type of signal has been used previously for
estimating the LFO frequency and shape of LTV audio effects [14,
15]. Due to its spectral flatness, it was hypothesised that even a
few seconds of this signal would be sufficient to train the model.

4.2. Digital phaser

As a simplified test problem, the proposed model was initially
trained on data generated through a digital phaser with transfer
function (6) (K = 4) implemented through a time-domain re-
cursion in MATLAB. This can be viewed as a specific instance
of the model itself but without frame-based spectral processing
and under known parameters, shown in Table 2. The LFO was
set to a triangular wave, sweeping through break-frequencies from
4000 rad s−1 to a maximum of 16 000 rad s−1. The maximum
60 dB decay time of this system (occurring at the minimum of the
LFO cycle) was measured to be t60 = 38ms.

4.3. EHX Small Stone

The Electro-Harmonix (EHX) Small Stone is a commonly encoun-
tered analog phaser pedal. The pedal has a single knob to control
the rate of the effect, and a binary “colour” switch. High-level
analysis of a circuit schematic [26] showed that it consisted of an
LFO module, a series of four first order all-pass filter sections and
a feedback loop (engaged when the “colour” switch is on). This
circuit therefore shares the same topology as the proposed model.
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The Small Stone data was collected by processing both the training
and testing audio through the pedal in one continuous recording.
The audio was sent to the pedal via the output of a PreSonus Au-
diobox i2 interface, and the output of the pedal re-connected to
the input of the audio interface. A calibration recording was ob-
tained with the pedal in bypass-mode and used as the input to the
models to negate the effect of the recording equipment on model
training. Six unique parameter configurations were captured: three
different positions of the ‘rate’ knob with colour switch ON (cir-
cuit with feedback) and colour switch OFF (no feedback). The
LFO rates were estimated through manual inspection of the spec-
trogram, providing a pseudo-ground-truth f0 which could later be
compared to the learned LFO signals — see Table 1.

Table 1: Manually estimated LFO rates of the Small Stone under
different parameter configurations. * denotes approximate values.

Label Colour Rate knob position T0* [s] f0* [Hz]
SS-A 3 o’clock 0.44 2.28
SS-B OFF 12 o’clock 1.60 0.625
SS-C 9 o’clock 11.6 0.086
SS-D 3 o’clock 0.70 1.4
SS-E ON 12 o’clock 2.56 0.38
SS-F 9 o’clock 18 0.056

5. EXPERIMENTS AND RESULTS

The focus of the experiments presented here is on the effect of the
window length W (in seconds) on model accuracy in the context
of both model training and inference. In all experiments, the accu-
racy metric was the resultant ESR (18) on the test dataset. It was
noted that the training convergence was sensitive to the initialisa-
tion of the MLP parameters, γ. To address this issue, each training
procedure was re-initialised and repeated three times. The itera-
tion with the lowest ESR was retained. A frame overlap of 75%
was used across all experiments, with the frame length in samples
N truncated to a multiple of four to ensure constant-overlap-add
[18].

5.1. Experiment 1: training frame size sweep

As an initial experiment, instances of the model were trained with
frame lengths ranging from 10ms to 160ms on the following data:

(a) Digital phaser with LFO rate T0 = 2 s (DP-2).

(b) Small Stone with parameter configuration A (SS-A).

(c) Small Stone with parameter configuration D (SS-D).

The training data was truncated to 2.67 s in duration to accelerate
training, and was deemed sufficient given that it contained at least
one LFO cycle for all case studies.

The ESR obtained in experiment 1 can be seen in Figure 7. In
the case of the digital phaser, frame lengths of 40ms to 160ms
all resulted in a error-to-signal of less than 1% on the testing data
– implying an accurate match between the model output and tar-
get waveform with minimal artefacts introduced by windowing.
The frame lengths of 10ms and 20ms produced worse results,
suggesting an insufficient number of bins in the transfer function
shape the spectrum and/or severe time aliasing in the output. The
learned parameters during this experiment can be found in Table 2

and show a good estimation of the parameters in the target model.
Figure 8 shows the synthesised LFO signals, compared to the tar-
get triangular wave.

In the case of the Small Stone, the resulting model accuracy
depended on the presence of feedback in the circuit. The mini-
mum test loss was approximately 1.5% without feedback and 10%
with feedback. This result is expected due to the increase in cir-
cuit complexity and longer decay time associated with the feed-
back case. In both cases, window lengths of 40ms and 80ms
provided the best performance—suggesting a good trade-off be-
tween time and frequency resolution. Despite the discrepancies in
numerical results, the perceptual differences are difficult to distin-
guish, informally, from the target system—however, some differ-
ences in the low-frequencies are noted for short window lengths.
The reader is referred to the accompanying web-page for audio ex-
amples. It is interesting to observe the learned LFO signals of the
Small Stone, as shown in Figure 9. In both cases, the MLP module
has consistently predicted a similar wave-shape across the frame-
rates. When engaged, the colour switch appears to increase both
the depth and the period of break-frequency modulation.
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Figure 7: ESR for different training window lengths W on the test
audio of three case studies: digital phaser with T0 = 2s (DP-2),
Small Stone with parameter configurations A and D (SS-A, SS-D).

5.2. Experiment 2: training frame size vs LFO rate

Experiment 2 investigated the effect of frame-length on model ac-
curacy in more detail, considering as a case study the digital phaser
with LFO periods T0 = 0.5 s, 2 s and 8 s The length of training
data was held constant at 10 s, and the prior knowledge of target
LFO periods informed the choice of frame-lengths:

Wb = T02
b/2/100 where b = 0, . . . , 10 (19)

Figure 10 (top) shows the results of the experiment, with min-
imum test loss against training frame size for different rates of
phaser effect. Firstly, we see that the model accuracy increases for
longer LFO periods. This is intuitive, as in the limit T0 → ∞ the
target system becomes linear and time-invariant (LTI) so we ex-
pect the artefacts of frame-based processing to diminish. Also in-
tuitively, the results suggest the optimum window length depends
on the target LFO period. In the bottom figure, the window length
has been normalised to target LFO period. In this case, the opti-
mum W/T0 ratio shows consistency across the phaser rates, with
W/T0 ≈ 5% giving, on average, the lowest loss.
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Figure 8: Outputs of the MLP module (left) and the absolute error (right) compared to the triangular LFO in the target digital phaser, with
T0 = 2s (plotted left as ground truth).
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Figure 9: Outputs of the MLP module in the Small Stone modelling task for different training window lengths with feedback off (SS-A, left)
and feedback on (SS-D, right). In both cases, the training audio was recorded with the pedal’s rate knob at 3 o’clock. NB the ground-truth
signal is unknown so not plotted.
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Figure 10: ESR against training window length W (top) and the
ratio of training window length to target LFO period W/T0 (bot-
tom) for the digital phaser.

5.3. Experiment 3: inference frame size

The aim of the final experiment was two-fold: to train instances of
the model on all six parameter configurations of the Small Stone,
and to investigate the effect of window length on model accu-
racy during inference. For each configuration, the training window
length was informed by the results of Experiment 2 and set within
5-10% of the estimated LFO period (see Table 1). The training
data was truncated to contain approximately three cycles of the
LFO. After training, the models were tested using various window
lengths at inference, with the results shown in Figure 11

In both feedback configurations, the models trained on higher

LFO rates (SS-A, SS-D) were most sensitive to changes in window
size at inference time. This implies a fine balance between the
window size being long enough to simulate the transient behaviour
of the device, but short enough to not smear the LFO behaviour.
In contrast, the accuracy of models trained on longer LFO periods
(SS-C, SS-F) was mostly unchanged across the range of window
sizes tested. This is a promising result, as it implies one can use
a long window size for accelerated training; but a short window
size for lower-latency playback at inference. However, the results
suggest that there will always be a lower bound on the frame size
that is determined by the decay time of the system modelled.
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Figure 11: ESR using various window sizes at inference time
across the Small Stone parameter configurations. The green
squares indicate the training window lengths.
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Table 2: Example learned parameters of digital phaser model with T0 = 2 s (DP-2). The parameters are from the best performing model in
Experiment 1, obtained using a window size of 80ms during training. Note that the biquad feedforward coefficients have been normalised.

Parameter Description Target value Initial Value Learned Value (to 3.s.f)
f0 LFO rate [Hz] 0.5 0.0627 0.500
g1 Wet mix 1.0 1.0 0.999
g2 Feedback gain 0.7 0.01 0.700
ϕ Feedback delay-line length (samples) 1 0.5 0.995
[b01 , b11 , b21 ] Biquad 1 feedforward coeffs. [1, 0, 0] [1, 0, 0] [1.00, -0.0641, 0.0336]
[a11 , a21 ] Biquad 1 feedback coeffs. [0, 0] [0, 0] [-0.0629, 0.0336]
[b02 , b12 , b22 ] Biquad 2 feedforward coeffs. [1, 0, 0] [1, 0, 0] [1.00, -0.0214, 0.0140]
[a12 , a22 ] Biquad 2 feedback coeffs. [0, 0] [0, 0] [-0.0238, 0.0136]

6. CONCLUSIONS AND FURTHER WORK

This work has presented a differentiable DSP model of a phaser
that uses frame-based spectral processing to implement a time-
varying filter in the frequency domain. The model was based on a
generalised continuous-time model of a phaser effect with several
free parameters learnable via gradient descent. It was shown that
the model can recover the parameters of a reference digital phaser
and learn the correct frequency, starting phase and waveform of
the underlying low-frequency oscillator (LFO), without seeing the
ground-truth LFO during training. Furthermore, the model was
trained to emulate an analog reference device. Informal listening
found the model perceptually convincing in this task for a range of
parameter configurations. Formal listening tests are important, but
left for future work. It was found that the objective model accuracy
depended on the training window length and required a manual es-
timation of the target LFO frequency for the best results. Future
work will aim to remove the need for this initial estimation, per-
haps through a multi-resolution training process. A key limitation
of the proposed model is the inherent latency introduced by the
frame-based approach, which could be problematic for real-time
model inference. Future work will aim to remove this by imple-
menting an equivalent audio-rate time-domain recursion. Finally,
further work may involve extending the general approach proposed
in this paper to grey-box modelling of other time-varying filters
and delay-based audio effects such as auto-wah, flangers and cho-
rus.
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