Download Articulatory vocal tract synthesis in Supercollider
The APEX system [1] enables vocal tract articulation using a reduced set of user controllable parameters by means of Principal Component Analysis of X-ray tract data. From these articulatory profiles it is then possible to calculate cross-sectional area function data that can be used as input to a number of articulatory based speech synthesis algorithms. In this paper the Kelly-Lochbaum 1-D digital waveguide vocal tract is used, and both APEX control and synthesis engine have been implemented and tested in SuperCollider. Accurate formant synthesis and real-time control are demonstrated, although for multi-parameter speech-like articulation a more direct mapping from tract-to-synthesizer tube sections is needed. SuperCollider provides an excellent framework for the further exploration of this work.
Download Practical Virtual Analog Modeling Using Möbius Transforms
Möbius transforms provide for the definition of a family of onestep discretization methods offering a framework for alleviating well-known limitations of common one-step methods, such as the trapezoidal method, at no cost in model compactness or complexity. In this paper, we extend the existing theory around these methods. Here, we show how it can be applied to common frameworks used to structure virtual analog models. Then, we propose practical strategies to tune the transform parameters for best simulation results. Finally, we show how such strategies enable us to formulate much improved non-oversampled virtual analog models for several historical audio circuits.
Download A VST Reverberation Effect Plugin Based on Synthetic Room Impulse Responses
In this paper we present a newly developed VST reverberation effect plugin (“HybridReverb”) based on synthetic room impulse responses (RIRs). We detail how we choose proper parameters for the synthesis of RIRs as presets for our convolution-based reverberation effect. The implemented stereo/surround plugin provides natural sounding reverberation based on physical principles. The newly developed convolution engine features signal processing with low latency and uniform processing load.
Download Simulating Idiomatic Playing Styles in a Classical Guitar Synthesizer: Rasgueado as a Case Study
This paper presents our research efforts to synthesize complex instrumental gestures using a score-based control scheme. Our specific goal is to simulate the rasgueado technique that is popular especially in flamenco music. This technique is also used in the classical guitar repertoire. Rasgueado is especially challenging as ordinary music notation is not adequate to represent the dense stream of notes required for a convincing simulation. We will take two approaches to realize our task. First, we use the practical knowledge of how the actual performance is accomplished by the human player. A second, complementary, approach is to analyze an excerpt from real guitar playing. Our main focus here is to extract the onset times and the amplitudes of the recoded gesture. Next we combine the results from the two analysis steps using a constraintbased approach to find possible pitch and fingering sequences. Finally we translate the findings to our macro-note scheme that allows us to fill algorithmically a musical score.
Download Multimodal Interfaces for Expressive Sound Control
This paper introduces research issues on multimodal interaction and interfaces for expressive sound control. We introduce Multisensory Integrated Expressive Environments (MIEEs) as a framework for Mixed Reality applications in the performing arts. Paradigmatic contexts for applications of MIEEs are multimedia concerts, interactive dance / music / video installations, interactive museum exhibitions, distributed cooperative environments for theatre and artistic expression. MIEEs are user-centred systems able to interpret the high-level information conveyed by performers through their expressive gestures and to establish an effective multisensory experience taking into account expressive, emotional, affective content. The lecture discusses some main issues for MIEEs and presents the EyesWeb (www.eyesweb.org) open software platform which has been recently redesigned (version 4) in order to better address MIEE requirements. Short live demonstrations are also presented.
Download Neural Grey-Box Guitar Amplifier Modelling with Limited Data
This paper combines recurrent neural networks (RNNs) with the discretised Kirchhoff nodal analysis (DK-method) to create a grey-box guitar amplifier model. Both the objective and subjective results suggest that the proposed model is able to outperform a baseline black-box RNN model in the task of modelling a guitar amplifier, including realistically recreating the behaviour of the amplifier equaliser circuit, whilst requiring significantly less training data. Furthermore, we adapt the linear part of the DK-method in a deep learning scenario to derive multiple state-space filters simultaneously. We frequency sample the filter transfer functions in parallel and perform frequency domain filtering to considerably reduce the required training times compared to recursive state-space filtering. This study shows that it is a powerful idea to separately model the linear and nonlinear parts of a guitar amplifier using supervised learning.
Download Simulating guitar distortion circuits using wave digital and nonlinear state-space formulations
This work extends previous research on numerical solution of nonlinear systems in musical acoustics to the realm of nonlinear musical circuits. Wave digital principles and nonlinear state-space simulators provide two alternative approaches explored in this work. These methods are used to simulate voltage amplification stages typically used in guitar distortion or amplifier circuits. Block level analysis of the entire circuit suggests a strategy based upon the nonlinear filter composition technique for connecting amplifier stages while accounting for the way these stages interact. Formulations are given for the bright switch, the diode clipper, a transistor amplifier, and a triode amplifier.
Download Digitally Moving An Electric Guitar Pickup
This paper describes a technique to transform the sound of an arbitrarily selected magnetic pickup into another pickup selection on the same electric guitar. This is a first step towards replicating an arbitrary electric guitar timbre in an audio recording using the signal from another guitar as input. We record 1458 individual notes from the pickups of a single guitar, varying the string, fret, plucking position, and dynamics of the tones in order to create a controlled dataset for training and testing our approach. Given an input signal and a target signal, a least squares estimator is used to obtain the coefficients of a finite impulse response (FIR) filter to match the desired magnetic pickup position. We use spectral difference to measure the error of the emulation, and test the effects of independent variables fret, dynamics, plucking position and repetition on the accuracy. A small reduction in accuracy was observed for different repetitions; moderate errors arose when the playing style (plucking position and dynamics) were varied; and there were large differences between output and target when the training and test data comprised different notes (fret positions). We explain results in terms of the acoustics of the vibrating strings.
Download Fractionally-addressed Delay Lines
While traditional implementations of digital delay lines are based on a circular buffer accessed by two pointers, we propose an implementation where a single fractional pointer is used both for reading and writing operations. On modern general-purpose architectures, the proposed method is nearly as efficient as the popular interpolated circular buffer, but it offers better performance in terms of frequency-dependent attenuation and response to delay-length modulations.
Download Energy-stable modelling of contacting modal objects with piece-wise linear interaction force
In discrete-time digital models of contact of vibrating objects stability and therefore control over system energy is an important issue. While numerical approximation is problematic in this context digital algorithms may meat this challenge when based on exact mathematical solution of the underlying equation. The latter may generally be possible under certain conditions of linearity. While a system of contacting solid objects is non-linear by definition, piece-wise linear models may be used. Here however the aspect of “switching” between different linear phases is crucial. An approach is presented for exact preservation of system energy when passing between different phases of contact. One basic principle used may be pictured as inserting appropriate ideal, massless and perfectly stiff, “connection rods” at discrete moments of phase switching. Theoretic foundations are introduced and the general technique is explained and tested at two simple examples.