
Fractionally-addressed delay lines

Davide Rocchesso

Dipartimento Scienti�co e Tecnologico, Universit�a di Verona

rocchesso@sci.univr.it

Abstract

While traditional implementations of digital delay lines are based on a circular bu�er accessed

by two pointers, we propose an implementation where a single fractional pointer is used both for

reading and writing operations. On modern general-purpose architectures, the proposed method

is nearly as e�cient as the popular interpolated circular bu�er, but it o�ers better performance in

terms of frequency-dependent attenuation and response to delay-length modulations.

1 Prior Art

The classic implementation of the digital delay line

uses a circular bu�er, which is accessed by a writ-

ing pointer followed by a reading pointer [5]. When

the delay length has to be made variable, the relative

distance between the reading pointer and the writ-

ing pointer is varied sample by sample. In order to

allow for fractional lengths and click-free length mod-

ulation, some form of interpolation has to be applied

at the reading point [10, 3, 9]. The following prop-

erties should be ensured by the interpolation device:

(i) at frequency response, (ii) linear phase response,

(iii) transient-free response to variations of the delay

length.

All of the prior realizations, as far as a �xed de-

lay length is considered, are linear and time-invariant

systems, thus being completely described by their fre-

quency response. Vice versa, we are proposing a real-

ization which is time-varying even in the case of con-

stant delay. While this realization was �rst proposed

and implemented as part of a thesis work [6], signal

and performance analyses were done very poorly at

that time. In the following sections we describe and

analyze the novel realization, with special focus on

implementations on general purpose architectures.

2 A Fractionally-Addressed

Delay Line

The key idea behind the proposed realization is to

use a single pointer for both the read and write ac-

cesses. If the delay line has �xed integer length B, it

is possible to use a bu�er exactly B-cells long and a

single pointer whose entry is �rst read and then writ-

ten. In the same bu�er we can also implement any

delay which is an integer fraction B=I just by incre-

menting the pointer at steps of I samples. We are

going to show how this scheme can be generalized to

non-integer fractions of the total bu�er length. The

resulting technique can be seen as an extension of

the table-lookup oscillator [4, 2], with the fundamen-

tal di�erence that every read is followed by one or

more writes, in such a way that the waveform is con-

tinuously re-stored while being read.

Given a bu�er size of B samples, and a sample

rate F

s

, a (fractional) increment of I samples gives a

delay in seconds equal to

D =

B

I � F

s

(1)

.

Since this realization is related to waveform gen-

eration by fractional addressing [2], we call it the

Fractionally-Addressed Delay (FAD) line.

2.1 Realization

As far as the value being read out of the delay line

is concerned, the FAD line behaves similarly to the

table-lookup oscillator, being possible to apply trun-

cation, linear interpolation, or multirate interpolation

techniques [5, 10]. More complicated is the injection

of a new value, to be done right after the read, in

such a way that no \holes" are left in the current pass

through the bu�er. For instance, for I = 2, two writes

have to be performed for every read. A fractional in-

crement would correspond to a variable number of

writes at each step. Several interpolation techniques

can also be applied at the write stage. Our quan-

titative analysis will be conducted on a realization

where linear interpolation has been used in reading

and quadratic interpolation in writing.

The pseudo-C code in general form looks as fol-

lows:

loop

fph = floor(phase);

output = interpolated_read(table[fph],

table[fph+1], ...);

ph = (phase_old + 1) % length_table;

while (ph <= fph) {



table[ph] = interpolated_write(

..., table[phase_old], input);

ph = (ph + 1) % length_table;

}

phase_old = fph;

phase = (phase + Increment);

if (phase > length_table)

phase = phase - length_table;

endloop

Notice that the interpolated read uses sam-

ples following the phase pointer, while the

interpolated write uses samples preceding the

pointer.

3 Input-Output Analysis

The FAD line is a time-varying system, and therefore

it is di�cult to characterize in terms of frequency re-

sponse. When a sinusoidal input feeds the FAD

line, spurious components are added to the main

spectral line [7]. The magnitude of these components

might be dependent on the frequency of the input

sine wave and the initial (fractional) phase of the

FAD-line pointer

1

. The signal-to-noise error ratio

(SNR) as a function of these two parameters shows a

very mild dependence on initial phase. Therefore, it

makes sense to plot the average SNR as a function of

the input frequency only (�g. 1). We can see that low

frequencies are a�ected by high SNR, thus indicat-

ing that the FAD line has an acceptable behavior for

practical sounds. Fig. 1 also shows a comparison with

the linearly-interpolated (FIR) delay line. The noise

error has been computed as the sum of the squared

di�erences between the input and output waveform

samples

2

[4]. The noise error is larger in the FIR

case even though that implementation has no spu-

rious components in the output spectrum. This is

due to the fact that the FIR attenuation is larger on

average.

Especially for applications such as waveguide

modeling of musical instruments [8], it is important

to consider the attenuation that di�erent frequencies

are subject to when fed into the delay line. The

attenuation of the main peak of the output spec-

trum turns out to be highly dependent on the initial

phase. Therefore, for the sake of comparison with the

FIR line, we plot in �g. 2 the minimum, maximum,

and mean attenuation as a function of the frequency

of the input sine wave. Notice that at 2=3 of the

Nyquist frequency the FIR line shows an attenuation

of 1:2dB while the FAD line shows a mean attenua-

tion of 0:5dB.

1

As an example of dependence on initial phase, consider the

increment I = 1. If the initial phase is 0 the pointer always

falls on samples. If the initial phase is 0:5 the pointer always

falls between samples.

2

A normalizing factor

p

2=N has been applied, being N

the number of samples per period.

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

SN
R

 [d
B]

pitch [radian/sample]

Signal-to-error noise ratios for a sinusoidal input Vs sine pitch

SNR FIR
SNR Fract. Addr.

Figure 1: Signal-to-error noise ratio Vs. sine fre-

quency for the FIR line and for the FAD line

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
At

te
nu

at
io

n 
[d

B]

pitch [radian/sample]

Attenuation of a sinusoidal input Vs sine pitch

max att. FA
min att. FA

mean att. FA
 att. FIR

Figure 2: Attenuation of a sinusoidal input Vs. sine

frequency for the FIR line and the FAD line

3.1 Behavior for time-varying delay

The FAD line shows an unconventional behavior

when the delay length is dynamically varied [7]. Sup-

pose to vary the delay length as a linear function of

time t, starting from the nominal delay �

0

and de-

creasing it at the rate of k seconds per second:

D(t) = �

0

� kt (2)

The FIR line responds with an instantaneous pitch

shift in the output signal. In other words, we get a

Doppler e�ect and the pitch shift is

�f = 1 + k (3)

On the other hand, the FAD line provides a steady

pitch shift

�f = e

k

(4)

after a transient time

�

i

=

�

0

k

(1� e

�k

) (5)

The transient time can be calculated by feeding

the delay line with an impulse at time 0. It will come

out of the line at the time instant �

i

such that

Z

�

i

0

I(t)dt =

B

F

s

(6)

where I(t) is the time-dependent increment which

produces the desired ramp in delay length. Equa-

tion (6) can be rewritten, using (1), as

Z

�

i

0

1

�

0

� kt

dt = 1 (7)



which is solved by (5).

The steady-state transposition can be calculated

by observing that a second impulse entering the line

at time T

i

\sees" an instantaneous delay of �

0

� kT

i

seconds. It gets out of the line at time

�

0

�kT

i

k

(1 �

e

�k

) + T

i

, exactly T

i

e

�k

seconds after the impulse

which entered at time 0.

A di�erent behavior is also reported in response

to sinusoidal modulations of the delay length [7].

These modulations are essential for e�ects such as

anging or phasing.

3.2 Physical Interpretation

If the dynamic behavior of the delay lines is closely

analyzed, we see that the FAD and the FIR real-

izations actually simulate two di�erent physical phe-

nomena. In both cases, the lines can be thought of as

a one-dimensional medium where waves propagate.

However, when the delay length is dynamically re-

duced we have two physical analogies in the two cases.

The shortening of the FIR line corresponds to the re-

ceiver getting closer to the transmitter, and therefore

we have a tight simulation of the Doppler e�ect. On

the other hand, the shortening of the FAD line corre-

sponds to incresing the velocity of propagation in the

medium while maintaining the same physical distance

between the two ends.

Figures 3{4 illustrate what happens when using

di�erent implementations of the delay lines in the

simulation of a one-dimensional waveguide resonator,

such as a string. In this application there is a couple

of delay lines in a feedback connection, each repre-

senting propagation of waves in one direction. For

the sake of simplicity, the terminations are supposed

to be perfectly reecting. If one of the delays is fed

by three periods of a fast sine wave, this packet prop-

agates, gets reected, feeds the other line, and comes

back to the excitation point for another reection.

Under ideal conditions, the packet keeps going back

and forth without attenuation or losses. Suppose

that, right after a reection at the excitation end,

suddenly the string gets lengthened by some amount,

as we would do for lowering the pitch of a string.

This can be simulated, in the classic FIR line im-

plementation, by moving the reading pointer back-

wards. However, this operation exposes again the

wave packet which has just been reected, thus mod-

ifying the \duty cycle" of the waveform, as reported

on �g. 3. A correct waveform can be obtained by

adding a write operation right after the read to the

FIR line implementation. This write takes care of

erasing the waveform as it passes the reading pointer.

Another way of lowering the pitch is that of instanta-

neously changing the string tension. In a waveguide

simulation this corresponds to changing the spatial

sampling via a change in the waveguide speed of prop-

agation [8]. This can be achieved by the FAD line im-

plementation just by changing the phase increment,

and the result is illustrated in �g. 4. A mixture of

tension and length increase might be obtained by us-

ing the FAD line with a variable bu�er size.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

FIR no erase

Figure 3: Note transition: FIR line

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

FAD

Figure 4: Note transition: FAD line

The two ways of producing a pitch shift are not

equivalent as far as timbre is concerned. In fact, the

FAD-line pitch change produces a contraction of the

whole spectrum, thus modifying the position of for-

mants, while the FIR-line pitch change comes without

moving the formants.

Summarizing, di�erent implementations of the

delay line do have practical consequences on the

timbre produced by dynamically-varying waveguide

models.

4 Performance

The FAD line has only one pointer for accessing data

in the bu�er. It exhibits spatial locality because any

short sequence of accesses spans over a small neigh-

borhood of the pointed bu�er cell. On the other

hand, a FIR line has two pointers, thus exhibiting two

distinct spatial localities. As a consequence, we ex-

pect that the FAD line makes better use of the cache

in general purpose computer architectures. However,

the FAD performs more writes than reads. In order

to attain a 50% of delay variability, we have to accept

up to two writes for every read.

The FAD line, despite of its higher complexity,

does not run much slower than the FIR line on a

general purpose computer. A rough benchmark has

been performed on an AMD � K6 architecture by

repeatedly delaying a sound�le stored in an array.

The experiment was done using a Linux operating

system with the machine in stand-alone single-user



con�guration. The �rst run was neglected because

it seemingly involves instruction and data loading in

the cache. An average of the following 13 repetitions

gave us the results which are summarized in �g. 5,

where benchmarks are reported for varying bu�er

size. A �rst comment is about the small di�erence

in performance of the three algorithms, especially if

we consider that the quadratically-interpolated FAD

line has about 5 times as many oating point oper-

ations as the FIR line. A second comment is about

the fact that the curves are monotonically increasing.

This indicates that more and more cache misses are

encountered when using larger bu�ers. The fact that

the slope of the FIR curve is higher than the other

curves con�rms that having only one locality helps

3

.

In the FIR curve it is also possible to see two peaks

of steepness right before reaching the sizes of 4096

and 65536 samples which, when translated in bytes,

give respectively the size of the level-1 data cache (32

KBytes) and the size of the level-2 cache

4

. Using the

FIR line and eliminating the phase increment it is

possible to measure the overall cost of caching, wich

is also visible from �g. 5 as the di�erence between the

two lower curves. Since it turns out to be less than 6%

even for very large bu�ers, we can argue that delay

lines are not a�ected much by the memory hierarchy.

In our implementations, we have not done ag-

gressive code optimization, so that the relative perfor-

mance of the three realizations might vary in practice

from what we have shown. In particular, we found

that oat-to-integer conversions are expensive, and

it would be wise to perform them by direct bit ma-

nipulation, as suggested in [1]. In any case, our re-

sults show that alternative implementations might be

considered for sound-processing building blocks, even

when the cost in terms of pure oating point opera-

tions seems daunting.

5 Conclusion

We have proposed a realization of the digital delay

line which is based on an extension of the table-

lookup oscillator. The proposed realization exploits

the features of modern computer architectures and

shows improved performance in terms of frequency-

dependent attenuation and dynamic behavior. We

expect this delay line will be considered as a build-

ing block for physically-based sound synthesis and for

sound e�ects such as angers and choruses.

References

[1] R. B. Dannenberg and N. Thompson. Real-time

software synthesis on superscalar architectures.

3

However, this phenomenon doesn't show up when the same

benchmark runs on an Intel Pentium II.

4

And also of the memory covered by the Translation Looka-

side Bu�er, which is responsible for fast translation of virtual

addresses to real addresses.

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

1000 10000 100000

tim
e

 [
se

co
n

d
s]

buffer size [samples]

 FAD quad
 FAD lin 

 FIR
 FIR no inc

Figure 5: Performance on an AMD-K6 of

the quadratically-interpolated FAD line, linearly-

interpolated FAD line, linearly-interpolated FIR line,

and FIR line with no phase increment, as a function

of bu�er size.

Computer Music J., 21(3):83{94, 1997.

[2] W. M. Hartmann. Digital waveform generation

by fractional addressing. J. Acoustical Soc. of

America, 82(6):1883{1891, 1987.

[3] T. I. Laakso, V. V�alim�aki, M. Karjalainen, and

U. K. Laine. Splitting the Unit Delay|Tools

for Fractional Delay Filter Design. IEEE Signal

Processing Magazine, 13(1), Jan 1996.

[4] F. R. Moore. Table lookup noise for sinusoidal

digital oscillators. Computer Music J., 1(1):26{

29, 1977.

[5] S. J. Orfanidis. Introduction to Signal Process-

ing. Prentice Hall, Englewood Cli�s, N.J., 1996.

[6] D. Rocchesso. Realizzazione di Risuonatori Dis-

persivi in Tempo Reale. Tesi di laurea, Univer-

sit�a di Padova, Dipartimento di Elettronica e In-

formatica, Feb. 1992.

[7] D. Rocchesso. A digital delay line based on frac-

tional addressing. In Proc. XII Colloquium Mus.

Inform., Gorizia, Italy, Sept. 1998. AIMI.

[8] J. O. Smith III. Principles of Digital Waveg-

uide Models of Musical Instruments, volume Ap-

plications of Digital Signal Processing to Audio

and Acoustics, pages 417{466. Kluwer Academic

Publishers, 1998. M. Kahrs and K. Brandenburg,

eds.

[9] S. Tassart and P. Depalle. Analytical approxi-

mations of fractional delays: Lagrange interpo-

lators and allpass �lters. In Proc. Int. Conf.

Acoustics, Speech, and Signal Processing, Mu-

nich, pages 455{458, Apr. 1997.

[10] U. Z�olzer. Digital Audio Signal Processing. John

Wiley and Sons, Inc., Chichester, England, 1997.


