Download An active learning procedure for the interaural time difference discrimination threshold
Measuring the auditory lateralization elicited by interaural time difference (ITD) cues involves the estimation of a psychometric function (PF). The shape of this function usually follows from the analysis of the subjective data and models the probability of correctly localizing the angular position of a sound source. The present study describes and evaluates a procedure for progressively fitting a PF, using Gaussian process classification of the subjective responses produced during a binary decision experiment. The process refines adaptively an approximated PF, following Bayesian inference. At each trial, it suggests the most informative auditory stimulus for function refinement according to Bayesian active learning by disagreement (BALD) mutual information. In this paper, the procedure was modified to accommodate two-alternative forced choice (2AFC) experimental methods and then was compared with a standard adaptive “three-down, one-up” staircase procedure. Our process approximates the average threshold ITD 79.4% correct level of lateralization with a mean accuracy increase of 8.9% over the Weibull function fitted on the data of the same test. The final accuracy for the Just Noticeable Difference (JND) in ITD is achieved with only 37.6% of the trials needed by a standard lateralization test.
Download Upcylcing Android Phones into Embedded Audio Platforms
There are millions of sophisticated Android phones in the world that get disposed of at a very high rate due to consumerism. Their computational power and built-in features, instead of being wasted when discarded, could be repurposed for creative applications such as musical instruments and interactive audio installations. However, audio programming on Android is complicated and comes with restrictions that heavily impact performance. To address this issue, we present LDSP, an open-source environment that can be used to easily upcycle Android phones into embedded platforms optimized for audio synthesis and processing. We conducted a benchmark study to compare the number of oscillators that can be run in parallel on LDSP with an equivalent audio app designed according to modern Android standards. Our study tested six phones ranging from 2014 to 2018 and running different Android versions. The results consistently demonstrate that LDSP provides a significant boost in performance, with some cases showing an increase of more than double, making even very old phones suitable for fairly advanced audio applications.
Download Design of FPGA-based High-order FDTD Method for Room Acoustics
Sound field rendering with finite difference time domain (FDTD) method is computation-intensive and memory-intensive. This research investigates an FPGA-based acceleration system for sound field rendering with the high-order FDTD method, in which spatial and temporal blockings are applied to alleviate external memory bandwidth bottleneck and reuse data, respectively. After implemented by using the FPGA card DE10-Pro, the FPGA-based sound field rendering systems outperform the software simulations conducted on a desktop machine with 512 GB DRAMs and a Xeon Gold 6212U processor (24 cores) running at 2.4 GHz by 11 times, 13 times, and 18 times in computing performance in the case of the 2nd-order, 4th-order, and 6th-order FDTD schemes, respectively, even though the FPGA-based sound field rendering systems run at much lower clock frequency and have much smaller on-chip and external memory.