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ABSTRACT

Measuring the auditory lateralization elicited by interaural time
difference (ITD) cues involves the estimation of a psychometric
function (PF). The shape of this function usually follows from
the analysis of the subjective data and models the probability of
correctly localizing the angular position of a sound source. The
present study describes and evaluates a procedure for progressively
fitting a PF, using Gaussian process classification of the subjective
responses produced during a binary decision experiment. The pro-
cess refines adaptively an approximated PF, following Bayesian
inference. At each trial, it suggests the most informative audi-
tory stimulus for function refinement according to Bayesian active
learning by disagreement (BALD) mutual information. In this pa-
per, the procedure was modified to accommodate two-alternative
forced choice (2AFC) experimental methods and then was com-
pared with a standard adaptive “three-down, one-up” staircase pro-
cedure. Our process approximates the average threshold ITD 79.4%
correct level of lateralization with a mean accuracy increase of
8.9% over the Weibull function fitted on the data of the same test.
The final accuracy for the Just Noticeable Difference (JND) in ITD
is achieved with only 37.6% of the trials needed by a standard lat-
eralization test.

1. INTRODUCTION

The ability to localize sound sources is of considerable importance
for humans and animals; it determines the direction of objects to
be sought or avoided and the appropriate direction to direct visual
attention. Although auditory localization may rely on the sound
arriving at one ear, the most reliable localization cues depend on
the acoustic waves arriving at both ears [1]. The difference be-
tween the two paths from a sound source to the ears creates an
interaural time difference (ITD). In parallel, an interaural level dif-
ference (ILD) occurs due to the head shadow on the contralateral
ear. In humans, the cue that enables sound localization most ac-
curately (up to 1 degree in azimuth) is the ITD [2]. Experiments
capable of isolating ITD used pairs of “on the ear” stimulators,
namely headphones. Early headphone-based tests reported ITD
detection thresholds at microsecond scale, that is, orders of mag-
nitude smaller than all other sensory modalities were able to de-
tect [3].

When headphones are worn, the sound source image is local-
ized inside the head. The term “lateralization” was then adopted
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to describe the apparent sound source position inside the head. On
the other hand, headphones allow for precise control of interaural
differences and do not generate room echoes. Therefore, lateral-
ization were preferred to localization tests when studying sound
source perception inside the laboratory [4]. Since the 1950s, accu-
rate studies have been systematically conducted to determine ITD
thresholds [5]. The lowest were reported to be close to 10 µs.
However, the participants’ hearing and training level necessary to
achieve those thresholds have become clear only recently, along
with the stimuli and measurement technique required for measur-
ing them [6]. Specifically, the stimulus that produced the lowest
ITD threshold was Gaussian noise, bandpass filtered from 20 to
1400 Hz and presented at a sound pressure level of 70 dB. The
most accurate method was a two-interval procedure with an inter-
stimulus interval of 50 ms. The mean ITD threshold in this con-
dition at the 75% corrected level was 6.9 µs for trained listeners,
and 18.1 µs for untrained listeners. However, other studies report
higher ITD values as normal hearing thresholds, i.e., with mean
equal to 263 µs and standard deviation equal to 112 µs [7].

We present an accelerated procedure for reliably determining
individual lateralization thresholds, and compare it to standard ap-
proaches to subjective ITD measurement. We will focus on un-
trained participants with the goal of significantly shortening the
test sessions. This feature would be desirable especially when spe-
cific groups of users are targeted, such as young patients whose
binaural acuity needs to be tested. Moreover, the same procedure
can quickly calibrate and individualize immersive audio technolo-
gies for the most diverse applications and virtual environments [8].

1.1. Psychometric function estimation

A psychometric function (PF) maps the subjective performance
during a perceptual task against a stimulus magnitude, such as
brightness or other intensity levels. Performance is measured as
the percentage of correct responses, or responses where the partic-
ipant was able to detect the stimulus. Ideally, a PF is estimated at
informative sample points on a continuous scale. The level set esti-
mation (LSE) problem consists of identifying the regions where an
initially unknown PF f(x) lies above or below a particular thresh-
old ϑ. In general, a level set S is the set on which f exceeds some
critical value (e.g., S = x : f(x) > ϑ). Efficient LSE is an ac-
tive learning problem [9], involving techniques that use surrogate
models to perform active sampling [10]. The active learning con-
figuration consists of the definition of an acquisition function that
classifies the data points to be labeled according to the current state
of the model and a hand-designed information measure to be maxi-
mized [11]. In Bayesian active-learning (BAL), the basic idea is to
define a statistical model and then tune its parameters in due data
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collection. Typically, the model is initialized with a weakly in-
formative prior distribution which expresses the uncertainty about
these parameters before the start of the experiment. Then, recorded
data provide likelihood terms to be combined with the prior in a
posterior distribution, reflecting the beliefs about the parameters
from the data collected so far. The stimulus for every subsequent
trial is selected so as to maximize some utility measure that is inte-
grated with the current posterior. One of the first BAL procedures
in psychophysics that used Bayesian principles for both modeling
the response and choosing the parameters for the next trial [12] was
designed to classify a subject into one of nine audiometric groups,
and was then validated with numerical simulations. The stimulus
for the subsequent trial was chosen to maximize the mutual infor-
mation between the current and the following unknown estimate
by selecting it with the least expected entropy [13]. Selection was
made by computing the posterior probabilities across all candidate
stimuli for the next trial.

A general BAL procedure for classification and preference
tasks that uses Gaussian Processes (GP) [14] for estimating a sub-
jective response is called Bayesian Active Learning by Disagree-
ment (BALD) [15]. These are the approximation technique and the
acquisition function employed in this study. GP-based Bayesian
inference has been recently employed in machine learning appli-
cations across various disciplines [16], and specifically in audiol-
ogy [17, 18]. GPs in fact incorporate prior hypotheses about the
mean, the smoothness between class boundaries, and the covari-
ance between data points. BALD active learning with GP clas-
sification (GPC) has already been used in auditory applications,
e.g. for optimal setting of a hearing aid [19], and for determining
audiograms [20, 21], equal-loudness contours [22], and psycho-
metric functions [23]. However, it has never been employed in the
measurement of ITD thresholds.

This paper presents: Sec. 2 the mathematical background of
GP and BALD classification; Sec. 3 the characteristics of the spe-
cific model; Sec. 4 the test determining individual lateralization
thresholds with BALD; Sec. 5 the results, and Sec. 6 their discus-
sion. Sec. 7 concludes the paper. As we will see from our results,
GPC with active learning is a valid approximation for the PF, with
a RMSE computed on the whole test set which is smaller than 10%
concerning the conventional Weibull fitting [24]; it achieves sim-
ilar performances as the default procedure (mean error equal to
5.1 µs) by requiring only 37.6% of the trials otherwise needed by
the standard procedure.

2. THEORETICAL BAKGROUND

2.1. Gaussian Processes Classification

Let f : R → R be a latent function on an arbitrary input space
X. A GP is a convenient technique for encoding prior knowledge
about f that can be later updated via Bayesian inference in light of
the observed data. A GP is a collection of random variables, any
finite subset of which jointly forms a Gaussian distribution. There-
fore, a GP is a particular case of a stochastic process. Like the mul-
tivariate Gaussian distribution, a GP is completely specified by its
first two moments: a mean function µ(x) and a positive semidef-
inite covariance function K(x,x′). The mean function expresses
the central tendency of the latent function, while the covariance
function accounts for its correlation structure. Given µ and K, the
latent function f can be endowed with a GP prior distribution

p(f) = GP
(
µ(x),K(x,x′)

)
. (1)

Given a GP prior on f and some observations over the input space,
a prediction can be performed about the behavior of f for unob-
served inputs using Bayesian inference, computed by Bayes’ rule:

posterior =
likelihood × prior

marginal likelihood
.

According to Bayes’ theorem, the joint posterior of the latent func-
tion at training and test inputs given the training observations is

p(f , f∗|X,y, x∗) =
p(f , f∗|X, x∗)p(y|f)

p(y|X)
, (2)

where f(x∗) = f∗, and f = f(X). The predictive posterior dis-
tribution can be determined by marginalizing out the training set
latent variables and substituting in (2),

p(f∗|X,y, x∗) =

∫
p(f , f∗|X,y, x∗)df

=
1

p(y|X)

∫
p(y|f)p(f , f∗|X, x∗)df ,

(3)

and by definition of the GP, the joint probability p(f , f∗|X, x∗)
is a multivariate Gaussian. With the posterior, we can compute
a probabilistic prediction of the latent function f at the new input
locations X∗, taking into consideration the previously observed
samples (y,X). The posterior mean and the posterior covariance
on f provide information about the updated beliefs and the remain-
ing uncertainty about the latent function. The likelihood p(y|f)
describes the relationship between the latent function values f and
the observations y at the training inputs X.

The focus of this study is one-dimensional binary classifica-
tion, where observed outputs can only assume two values: 1 (suc-
cess) or 0 (failure). The latent function f is not directly observed
but is instead a hidden function, where larger values of f generate
higher probabilities of success. To obtain the probabilistic distribu-
tion p(y = 1|f), f is “squashed” using a monotonically increasing
sigmoid function Φ to the range [0,1]. For a binary observation yi
associated with an input xi ∈ X,

p(yi = 1|f) = Φ(fi) = Φ (f(xi)) . (4)

One largely used and convenient choice of Φ to deal with binary
classification problems is the inverse-logit, also known as Bernoulli-
logistic function likelihood, given by

Φ(fi) =
1√
2π

∫ fi

−∞
e−

t2

2 dt, (5)

and assuming that the labels y = (y1, . . . , yN ) of the N training
data points are conditional independent if (latent) f are known,

p(y|f) =
N∏
i=1

p(yi|f(xi)). (6)

The predictive posterior distribution in (3) with (6) now becomes

p(f∗|X,y, x∗) =
1

p(y|X)

∫ N∏
i=1

Φ(fi)p(f , f∗|X, x∗)df . (7)

From (7), the probabilistic prediction of class identity for a test
observation y∗ can be computed as:

p(y∗ = 1|X,y, x∗) =

∫
p(y∗ = 1|f∗)p(f∗|X,y, x∗)df∗

=

∫
Φ(f∗)p(f∗|X,y, x∗)df∗.

(8)
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The non-Gaussian likelihood of (5) for the classification frame-
work given by (4) makes the integrals in (7) and (8) analytically
intractable. Dropping the conditioning on the training and test data
points for ease of notation and applying the reverse chain rule, we
have

p(f , f∗|y) = p(f∗|f)p(f |y). (9)

The first term of (9) can be computed by applying the multivari-
ate Gaussian conditional rule to the GP prior, while the second
term can be approximated with variational inference [25]. A mul-
tivariate Gaussian variational distribution q(f) approximating the
posterior p(f |y) is found through the minimization of the Kull-
back–Leibler divergence (KL divergence) [26] KL(q(f)||p(f |y)).
Since this similarity measure is also intractable, the variational ev-
idence lower buond (ELBO) is used as a proxy for the KL diver-
gence minimization:

LELBO = Ep(y,x)

[
Ep(f|u,x)q(u) [log p(y | f)]

]
− KL [q(u)∥p(u)]

≈
N∑
i=1

Eq(fi) [log p(yi | fi)]− KL [q(u)∥p(u)] ,
(10)

where N is the number of data points, q(u) is the Gaussian vari-
ational distribution computed at the inducing function values u,
q(fi) is the marginal of p(fi|u, xi)q(u), p(u) is the GP prior dis-
tribution for the inducing function values. The ELBO is the lower
bound of the log marginal likelihood log(p(y)), also called model
evidence, and it is an expression containing all the parameters
defining the GP prior and the variational distribution; thus, gra-
dient descent can be used to maximize the ELBO concerning the
model parameters to find concrete values for those parameters. In
practice, the negation of (10) will be used as the “loss” function to
determine the “hyperparameters” of the GP prior distribution.

2.2. Bayesian Active Learning by Disagreement

The fundamental principle of active learning requires that a model
actively selects input queries xi ∈ X and observes the system’s re-
sponse yi, rather than passively collecting (xi, yi) pairs. The goal
of information theoretic active learning is to reduce the number of
possible hypotheses in the fastest way, i.e., to minimize the un-
certainty about the parameters using Shannon’s entropy [27]. The
objective is to seek the data point x that maximizes the decrease in
expected posterior entropy [15]:

argmax
x

H[θ|D]− E y∼p(y|x,D)[H[θ|D]],

or, equivalently, the point maximizing the conditional mutual in-
formation between the unknown output and the parameters θ, given
a training dataset D:

argmax
x

H[y|x,D]− E θ∼p(θ|D)[H[y|x,θ]].

BALD searches the x for which the model is marginally most un-
certain about y, holding confident individual settings of the model
parameters.

The BALD algorithm for GPC consists of two steps. First, it
applies an approximate inference algorithm for GPCs to obtain the
posterior predictive mean µx,D and variance σ2

x,D for each point
of interest x. Then, it selects a query x that maximizes the mutual

information. The first term can be expressed in terms of the binary
entropy function h:

H[y|x,D] ≈ h
(∫

Φ(fx)N (fx|µx,D, σ2
x,D)dfx

)

= h

Φ

 µx,D√
σ2
x,D + 1

 ,

(11)

with h(p) = −p log p − (1− p) log(1− p)(p). The second term
E f∼p(f|D)[H[y|x,θ]] can be approximated to

E f∼p(f|D)[H[y|x,θ]] ≈ C√
σ2
x,D + C2

exp

(
−

µ2
x,D

2
(
σ2
x,D + C2

)) ,

where C =
√

π ln 2/2.

3. GPC FOR 2AFC

Finding the most accurate way to approximate the PF describing
lateralization ability is the main objective of this work. A particu-
larly important value in two alternative forced choice (2AFC) tests
is the point at which the PF assumes a certain percentage, typically
70.7%, 75%, 76%, or 79.4% [28], with which the ITD threshold
is associated. In these psychometric tests, the probability of as-
signing the correct classification label to a specific stimulus cannot
be less than 50%, and the maximum probability must consider a
percentage of errors given by a lapse rate close to zero [29].For
these reasons the Gaussian-modeled latent function is squashed
into the interval [0.5, 1]. The mean and covariance functions of
the GP prior given by (1) are respectively set to a constant func-
tion µ(x) = µ, and the radial basis function

K(x, x′) = exp

(
−1

2
(x− x′)⊤θ−2(x− x′)

)
, (12)

where θ is a length scale parameter. The hyperparameters’ vector
θ = (µ, θ) is determined during the training, i.e., during the min-
imization of the negative log likelihood given by the negation of
the variational ELBO in (10). The variational ELBO is modeled to
approximate the likelihood once it is scaled to the restricted prob-
ability values. This likelihood is computed as

Φ
(
C′) = 1

4

(
1 + erf

(
C′
√
2

))
+

1

2
, (13)

where C′ = µx,D/
√

σ2
x,D + 1, µx,D and σ2

x,D are respectively
the mean and the variance of the Gaussian-modeled latent func-
tion, and erf is the error function:

erf(z) =
2√
π

∫ z

0

exp−t2dt. (14)

To take this scaling into account while computing the acquisition
function of the BALD procedure, we rescale the likelihood be-
tween 0 and 1 at the Shannon’s entropy input. This way, a max-
imum entropy starting around the 75% probability point is ob-
tained.
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Figure 1: Test protocol and experimental flow.

4. THE EXPERIMENT ON ITD DISCRIMINATION
THRESHOLDS

4.1. Participants

Seventeen young adults (5 male and 12 female, mean age: 31.82
± 6.38 years) reporting no hearing deficiencies participated in the
experiment. Twelve had audiometric thresholds equal to or less
than 20 dB hearing level (HL) at octave-spaced frequencies from
125 to 8000 Hz. For those five participants without audiometry,
the answers to Sanders’ questionnaire 1 reported no hearing diffi-
culties. One participant was excluded from the experiment since
reporting to be unable to concentrate sufficiently during the test.
All participants reported no prior experience with a binaural hear-
ing test.

4.2. Acoustic Stimulus and Apparatus

Narrowband noise was synthesized at 10 MHz sampling rate, using
the Python TorchAudio software package [30]. Band-pass filtering
was performed in the frequency domain so as to limit the noise
frequency band to the [20–1400] Hz range [6]. The amplitude level
was calibrated to 70 ± 1 dB SPL using an NTi Audio XL2 sound
level meter. After temporal gating, a short noise burst lasting 0.5 s
was created having a 50 ms squared-cosine onset and offset.

A burst sequence was formed by intertwining identical noise
bursts with silence lasting 0.2 s. The stimulus was formed by pair-
ing a delayed version of this sequence and a new version of the
same sequence, obtained by zero-padding the original until reach-
ing the same length as the former. The delay could be varied so as

1https://www.aooi.it/contents/attachment/c4/ref121.pdf, a validated
questionnaire to evaluate the actual level of communication in various sit-
uations, e.g., at home or in a social environment, accessed Feb 28, 2023.

to define a desired ITD = TR − TL = T − (−T ) = 2T :

RIGHT

T︷ ︸︸ ︷
0, . . . , 0, burst,

0.2 s︷ ︸︸ ︷
0, . . . . . . , 0, burst,

padding︷ ︸︸ ︷
0, . . . , 0

LEFT burst, 0, . . . , 0︸ ︷︷ ︸
padding

, 0, . . . . . . , 0︸ ︷︷ ︸
0.2 s

, 0, . . . , 0︸ ︷︷ ︸
T

, burst
. (15)

The stimulus was presented on two audio channels through a pair
of AKG K240 MKII semi-open headphones, whose frequency re-
sponse was flattened using the AutoEQ software2. Sounds were
reproduced by a 13” MacBook Pro M2 laptop computer after sam-
pling them down to 96 kHz, through interpolation with a sync
function windowed by a Hann window. This sampling rate was
the highest available in the laptop’s audio interface, in practice
limiting the lowest ITD to 10 µs. A GUI enabling attendance to
the task was realized in HTML, CSS, and JavaScript programming
languages as a custom Flask web application. The test took place
in a room with background noise equal to 20 ± 2.5 dB SPL.

4.3. Task and Experimental Protocol

The experimental protocol is illustrated in Fig. 1. During the test,
each participant was sitting in front of the laptop computer running
the GUI. At each trial, the task consisted of listening to two sub-
sequent and randomly balanced stimuli, and then choosing which
sound was the rightmost, by selecting it with the mouse on the
computer screen. At the beginning of each session, five pilot tri-
als were presented having ITD levels equal to 240, 200, 160, 120,
and 80 µs. Correct guesses in all such trials were necessary for
the measurements to start in correspondence with the sixth trial. A
session lasted approximately 10 minutes.

The protocol was designed for determining the PF 79.4% thresh-
old, describing the subjective lateralization performance as a func-
tion of T defined in (15). The target (i.e., rightmost) stimulus

2https://githubq.com/jaakkopasanen/AutoEq, accessed Feb 28, 2023.
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was lateralized twice as much as a nominal ITD, and the refer-
ence source (i.e., leftmost) stimulus was instead lateralized with
an opposite ITD. Hence, an ITD threshold equal to 2T means that
a participant discriminated the target ITD by Tµs from the refer-
ence ITD of −Tµs. The presentation of symmetric ITDs mini-
mizes hemispheric effects, and ensures that participants could not
perform the task based on perceived changes in interaural coher-
ence [28].

The protocol implemented three different procedures:

• adaptive two-interval 2AFC (2I-2AFC hereafter),

• GPC with BALD active learning (BALD hereafter),

• GPC with random acquisition function (RANDOM here-
after).

Accordingly, every session included three series of trials respec-
tively implementing such procedures in a randomly balanced or-
der. When GPC was used, thus enabling active learning and ran-
dom selection of ITDs, the number of trials was empirically set to
15. We compared these three procedures to observe the efficacy
of GPC in ITD threshold estimation and the contribution of the
BALD algorithm. In the standard 2I-2AFC procedure, individual
thresholds were computed using the adaptive track reversal tech-
nique or a Weibull fitting of the participants’ answers. We con-
sider this procedure as a reference since it is commonly used to
determine JND thresholds for many types of stimuli, moreover it
can be designed to converge on a desired percentage. Conversely,
the GPC approximation was compared to a Weibull fitting of the
data collected using the other two procedures. Reversals were in-
cluded in the comparison even though they are known to have high
bias and smaller precision [31], considering their difference from a
Weibull fitting in the same manner as it happens for the upper limit
of a reasonable estimate. The RANDOM procedure was imple-
mented to test the GPC technique separately from active learning,
i.e., to analyze the GPC on training points other than highly infor-
mative data points. Assuming a participant performs consistently
across all tests, the RANDOM procedure will converge, but in a
variable number of iterations dependent on the samples’ random
distribution.

4.3.1. Default 2I-2AFC

An adaptive “three-down, one-up” staircase procedure was chosen,
i.e., T was decreased after three correct responses and increased
after one wrong response. Theoretically this procedure estimates
the 79.4% correct level on the PF [32]. The corresponding series
of trials started with an ITD threshold that was above the threshold
estimated during the pilot series, equal to 80 µs, i.e., presenting
stimuli with T = 40 µs. T step-size was initially a factor of 2 and
then reduced to 1.414 and 1.189 after the first and second “down-
up reversal”, respectively. This series terminated after six reversals
at the smallest step size. T was varied by logarithmic steps [32].

Psychometric functions were estimated using a parametric fit
of a Weibull function to all responses with a non-linear least squares
optimization:

Ψ(x; γ, λ) = γ +
(1− γ − λ)

2

(
1 + erf

(
x− µΨ√
2 · σ2

Ψ

))
, (16)

where γ is the guess rate (i.e., 0.5), λ is the miss rate in the range
[0.01,0.05], and erf is the error function of (14).

4.3.2. GPC

The GPC started with a training set of 20 points: 10 points between
0 µs and 9 µs, all labeled as wrong answers, and 10 points between
91 µs and 100 µs, all labeled as correct answers. T corresponding
to 79.4% of correct answers was found to allow the fitted curve to
reach the closest value to that percentage up to 1 µs. In Fig. 2, the
two plots respectively represent the predictions of the GPC and
Weibull fit, on a test set consisting of 100 equally-spaced points
between 1 and 100 µs. Both identify the 79.4% correct answers
point with a difference equal to 8 µs.

The GPC training, i.e., the hyperparameters’ vector θ opti-
mization, was performed on the normalized data (mean equal to
0 and standard deviation equal to 1) and furthermore constrained
to search only positive values. In this regard, the Adam opti-
mizer [33] was employed with a learning rate equal to 0.1 and
a number of iterations set to 300. The GPC was implemented in
GPyTorch [34], a software platform for scalable GP inference built
on PyTorch.

4.3.3. BALD

The BALD acquisition function was computed at each step to de-
termine the stimulus for the next trial iteratively. T of the binaural
stimulus was randomly selected among all possible points in the
pool, achieving mutual information levels higher than 90% of its
maximum value in that set. The initial pool was made to corre-
spond to the test set, i.e., the 100 points between 1 and 100 µs.
Once a sample was labeled, it was removed from the pool so that
each point was labeled once. After the first random selection, a
new sample was chosen from that restricted subset of the pool be-
ing at least 5 µs far from every previously selected sample. If no
sample satisfied this condition, a random choice was made from
the samples achieving mutual information levels higher than 90%
of its maximum value in the current pool’s subset. The first T
value was randomly drawn between 46 µs and 64 µs.

5. RESULTS

The number of trials during the 2I-2AFC procedure had a mean
value across participants equal to 39.94 and a standard deviation

Figure 2: Starting training data for the GPC (black dots) and pre-
dictions of both the GPC (red line) and the fitted Weibull function
(W, blue line). The dotted horizontal line indicates the 79.4% level
of correct answers.
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Table 1: Individual 79.4% thresholds and means (µ) and standard
deviations (σ) across participants for each technique. The “Rev”
column lists T values found with the reversals procedure.

# @ 79.4% (µs)
2I-2AFC BALD RANDOM
W Rev W GPC W GPC

1 10 14.1 6 1 48 34
2 57 67.2 54 54 56 43
3 25 33.6 23 19 31 22
4 14 11.9 16 10 1 10
5 22 33.6 34 26 2 17
6 39 40.0 57 41 16 13
7 30 33.6 35 23 16 8
8 39 47.6 38 32 57 39
9 46 67.2 48 53 52 52

10 23 28.3 26 22 25 23
11 40 47.6 38 32 54 44
12 10 14.1 19 17 20 15
13 58 67.3 52 55 47 30
14 21 23.8 23 18 20 15
15 39 47.6 51 36 57 66
16 45 47.6 55 49 38 22
17 31 33.6 29 23 39 39
µ 32.3 38.8 35.5 30.1 34.1 28.9
σ 14.4 17.4 15.0 15.5 18.7 15.9

equal to 5.70. The correct percentage had a mean equal to 80.20%
and standard deviation equal to 3.85%. The repeated measures
ANOVA test conducted on the number of trials asserted that the
difference between the averages is big enough to be statistically
significant (p < 0.001), and the magnitude of the difference be-
tween the averages is large (effect size η > 0.9). Table 1 shows
the 79.4% ITDs for every test procedure, computed with the two
respective aforementioned techniques. Mauchly’s test of spheric-
ity indicated that the assumption of sphericity had been violated,
both for the individual T values (χ2(14) = 74.11, p < 0.001),
and their logarithms (χ2(14) = 92.848, p < 0.001), therefore a
Greenhouse-Geisser correlation was used (respectively, ϵ = 0.321,
and ϵ = 0.338). The repeated measures ANOVA test did not re-
veal a significant main effect of either the fitting technique, or the
testing procedure (p > 0.1). The means and standard deviations
across participants of the differences of the 79.4% threshold points
are shown in Table 2, along with their absolute values, between
approximation techniques and procedures. The former reveals the
tendency of the approximation to return an optimistic rather than
pessimistic estimate of the ITD threshold, while the latter gives a
measure of the divergence between the two approximations.

The comparison between the PF curve found with the Weibull
function fitted to the reference test procedure data and the GPC,
and the same Weibull fitting on the BALD and the random sam-
pling procedures has been made using the root mean square er-
ror (RMSE). The lowest RMSE was found between the Weibull
fittings in the reference test procedure and the BALD procedure
(µ = 6.39%, σ = 2.44%), followed by the GPC in the same
test procedure (µ = 7.10%, σ = 2.73%). Both the approxi-
mation techniques in the random procedure have a mean RMSE
above 10% (Weibull: µ = 10.81%, σ = 5.20%, GPC: µ =
11.10%, σ = 4.65%). Figure 3 displays the data of a single in-
dividual collected in a complete test session.

Table 2: Means (µ) and standard deviations (σ) of the differences
(∆) and the absolute values of the differences (|∆|) of the 79.4%
T values found in the three procedures with the three techniques.
Each approximation was compared with the one provided by the
Weibull fitting on the same data, as well as with the approximation
computed by that fitting on the reference 2I-2AFC test procedure
(“WREF”).

Procedure Methods ∆ (µs) |∆| (µs)
µ σ µ σ

2I-2AFC Rev, W 6.5 5.1 6.7 4.8
BALD GPC, WREF -2.2 5.1 5.1 2.4

W, WREF 3.2 6.6 5.6 4.7
GPC, W -5.5 5.3 6.4 4.1

RANDOM GPC, WREF -3.4 15.4 12.1 10.1
W, WREF 1.8 15.2 12.4 9.1
GPC, W -5.1 9.3 9.0 5.7

6. DISCUSSION

The mean values displayed in Table 1 are in line with the thresh-
olds found in literature [7]. Particularly in our experiment, in
which stimuli with a sampling frequency below 100 KHz were re-
produced, no ITDs smaller than 10 µs could be presented to the lis-
teners. However, our participants were not trained for the specific
task, and hence they were not expected to perceive ITD thresh-
olds below this value. Conversely, it was demonstrated that hu-
mans can improve their lateralization skills after a dedicated train-
ing [35, 28].

The ITD is typically allowed to vary on a logarithmic scale
in the lateralization literature, and data analysis is typically done
using geometric means and standard deviation [36, 28]. However,
alternative methodologies [35, 37] employ different test conditions
in terms of the stimuli presented to the participant, and the use of
logarithmic scaling allowed them to find one individual psychome-
tric curve. Second, the goal of those experiments was to determine
the smallest perceivable ITD, hence the use of the geometric mean
and standard deviation to “zoom in” on the end scale of that mea-
sure. On the other hand, we want to determine the individual ITD
thresholds with the same accuracy for any level of lateralization
ability, particularly considering a possible application of the pro-
posed procedure in audiology tests. Moreover, we expect that the
same individual would perform similarly in each test because the
stimulus and the task were kept unchanged during the whole ses-
sion. Thus, data analysis is performed with an arithmetic mean
and standard deviation.

The differences ∆ in Table 2 reveal that the GPC with the
BALD procedure is on average the closest 79.4% approximation
to the reference 2I-2AFC procedure with the specific Weibull fit-
ting (5.1 µs), providing a mean accuracy increase of 8.9% over the
Weibull function fitted to the same data. This difference has the
lowest standard deviation (2.4 µs). The GPC in the BALD proce-
dure scores second for what concerns the signed difference (−2.2
µs), revealing an optimistic tendency; only the Weibull fitting in
the random test procedure has a smaller one (1.8 µs), however the
former has the lowest standard deviation while the latter has one
among the highest, hence reflecting the prominent role of chance
associated with that test procedure. The standard deviations of the
differences ∆ of the RANDOM procedure reflect the random num-
ber of iterations required by the GPC in that procedure to converge.
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Figure 3: Data of a single individual collected in a complete ses-
sion. The top figure shows the GPC PF fittings and WREF fitting.
In the middle figure are displayed the absolute values of the differ-
ences of the 79.4% threshold points, while the bottom figure shows
the RMSEs between the GPCs and the WREF, computed at ev-
ery iteration step of the three procedures. The Weibull fitting in the
2I-2AFC procedure starts at the third iteration because the covari-
ance of the parameters could not be estimated with less than three
data points.

Even if the analyses of variance did not reveal any statistically sig-
nificant main difference, the BALD selection of samples is also
valuable for the Weibull fitting since both the approximations used
on that procedure’s data have the smallest differences in absolute
value and the least dispersed as well.

The RMSEs reported at the end of Sec. 5 confirm the suitabil-
ity of GPC to approximate the PF in a 2AFC procedure and the
ability of the BALD algorithm to identify optimal sampling; a fur-
ther hint of this is that the standard deviations of the RANDOM
procedure are the highest.

Future work may explore different directions. The proposed
experimental protocol may be employed to test pre-trained indi-
viduals instead of novices and feed the GPC with a logarithmi-
cally transformed input to observe which fit gives the best results.
Another direction may evaluate the BALD procedure without vali-
dated prior knowledge, such as for the hearing impaired, and check
whether the starting training set needs to be modified or if other
approximations are more suitable than GPC. The web application
was chosen to share the test between different institutions and au-
diological research labs, allowing them to conduct the experiment
remotely. In the current study, the application was used on a lo-
cal server. The next step will include a thorough verification for
deployment on a cloud platform.

7. CONCLUSIONS

In this study, a test for the fast determination of the Just Notice-
able Difference in interaural time differences has been proposed
and evaluated. A psychometric function was progressively fitted
using Gaussian process classification of the subjective responses
and Bayesian active learning by disagreement, aptly modified to
accommodate a two-alternative forced choice experimental proce-
dure. The results of its comparison with a standard adaptive “three-
down, one-up” staircase procedure show that our process computes
the closest approximation of the average threshold ITD 79.4% cor-
rect level of lateralization concerning the commonly used Weibull
fitting on the reference test, with a mean accuracy increase of 8.9%
over the Weibull function fitted on the data of the same test. The
final accuracy was achieved with only 37.6% of the trials the stan-
dard adaptive staircase procedure needs.

The data and the web application are freely available at https:
//zenodo.org/record/7808559 and https://github.
com/gullogullo/ITDtest, respectively.
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