
Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

 DAFx.1

DESIGN OF FPGA-BASED HIGH-ORDER FDTD METHOD FOR ROOM ACOUSTICS EQUATION SECTION 1TEMPLATES FOR DAFX-20, AUSTRIA, VIENNA

Yiyu Tan Guanghui Liu

Department of Systems Innovation Engineering

Iwate University

Inflammatory Bowel and Immunobiology Research Institute

Cedars-Sinai Medical Center

Morioka, Japan Los Angeles, US
tanyiyu@iwate-u.ac.jp guanghui.liu@cshs.org

Xin Lu Peng Chen, Yusuke Tanimu

Department of Systems Innovation Engineering

Iwate University

Digital Architecture Research Center

National Institute of Advanced Industrial Science and Technology

Morioka, Japan Tokyo, Japan
luxin@iwate-u.ac.jp {chin.hou,yusuke.tanimura}@aist.go.jp

 ABSTRACT

Sound field rendering with finite difference time domain (FDTD)
method is computation-intensive and memory-intensive. This re-
search investigates an FPGA-based acceleration system for sound
field rendering with the high-order FDTD method, in which spa-
tial and temporal blockings are applied to alleviate external
memory bandwidth bottleneck and reuse data, respectively. After
implemented by using the FPGA card DE10-Pro, the FPGA-based
sound field rendering systems outperform the software simula-
tions conducted on a desktop machine with 512 GB DRAMs and a
Xeon Gold 6212U processor (24 cores) running at 2.4 GHz by 11
times, 13 times, and 18 times in computing performance in the
case of the 2nd-order, 4th-order, and 6th-order FDTD schemes,
respectively, even though the FPGA-based sound field rendering
systems run at much lower clock frequency and have much small-
er on-chip and external memory.

1. INTRODUCTION

Room acoustic simulation exhibit numerical methods to model
sound propagation phenomena in spatial and time domain, and are
applied widely in many engineering and scientific applications,
such as sound source localization [1-3], virtual reality [4-5], artifi-
cial reverberation [6], boundary impedance estimation [7], and so
on. Many analysis algorithms have been proposed for sound field
rendering in room acoustics, in particular, FDTD method, which
has already become one of essential methods in room acoustics
since it was introduced to analyse acoustical behaviour by O. Chi-
ba et al., D. Botteldooren et al., and L. Savioja et al. [8-11]. FDTD
method solves wave equation with a finite number of stencil
points in a discretized sound space using numerical method, and
provides much higher accuracy over other methods like geometric
methods. The inherent problem of FDTD method is dispersion
error, and oversampling in spatial grids is usually required to sup-
press the numerical dispersion. As a result, computation and
memory demand are increased significantly. Although many
works were done at algorithmic level to solve this problem, such

 * This work was supported by the JSPS KAKENHI Grant Number

JP22K12123
Copyright: © 2023 Yiyu Tan et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 4.0 International License, which per-

mits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

as digital waveguide mesh topologies [12-15], explicit second-
order accurate schemes [16], high-order explicit “large-star”
schemes [17], and two-step explicit FDTD schemes with high-
order accuracy [18-20], these approaches still suffer from high
computational cost. In general, to solve wave equations using
FDTD method, computing capability is increased as the fourth
power of frequency and is proportional with the volume of a
sound space [6], and the size of the required memory is third pow-
er of frequency. Given the auditory range of humans (20 Hz-20
kHz), analyzing sound wave propagation in a space corresponding
to a concert hall or a cathedral (e.g. volume of 10000-15000 m3)
for the maximum simulation frequency of 20 kHz requires peta-
flops of computing capability and terabytes of memory. This re-
quires computing systems to have huge computational capability
and large memory bandwidth.

In recent years, graphic processing units (GPUs) and field
programmable gate arrays (FPGAs) have been applied to speed up
computation in sound field rendering because of their much higher
parallel computational capability over traditional general-purpose
processors [21-36]. In particular, latest FPGAs contain thousands
of hardened floating-point arithmetic units, several Megabytes of
on-chip block memories to cache data, and millions of reconfigu-
rable logic blocks. These on-chip hardware resources may be ap-
plied to directly implement sound wave equations to accelerate
computation in contrast with software simulations in GPUs and
general-purpose processors. Furthermore, system data paths can
be customized in accordance with the data flow of a sound field
rendering system to improve computing performance. On the oth-
er hand, the high-order FDTD method provides more accurate ap-
proximation on the second-order partial derivative and reduces
dispersion. In this research, an FPGA-based accelerator is devel-
oped to speed up computation in sound field rendering with the
high-order FDTD method. The main contributions of this work
are summarized as follows.
(1) A high-order FDTD method. The related formula is derived,

including approximation of the second partial derivative us-
ing Lagrange polynomial interpolation, the updated equation
of 4th-order and 6th-order FDTD schemes.

(2) Design and implementation of an FPGA-based sound field
rendering system with the high-order FDTD method. Spatial
and temporal blockings are adopted to reduce memory
bandwidth requirement and reuse data.

(3) Performance evaluation and analysis based on the prototype
machine. The proposed rendering system is designed using
OpenCL and implemented using the FPGA card DE10-Pro.

http://creativecommons.org/licenses/by/3.0/

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

 DAFx.2

Its performance is evaluated through analyzing sound prop-
agation in a three-dimensional shoebox with dimensions be-
ing 16m×8m×8m, incidence being an impulse, and sampling
rate of sound being 44.1 kHz. Compared with the software
simulations performed on a desktop machine with 512 GB
DDR4 RAMs and an Intel’s Xeon Gold 6212U processor
running at 2.4 GHz, the proposed rendering systems speed
up computation by 11 times, 13 times, and 18 times in the
2nd-order, 4th-order, and 6th-order FDTD schemes, respec-
tively.

The rest of this paper is organized as follows. The high-order
FDTD schemes are introduced in Section 2. In Section 3, system
design is described, including spatial blocking, temporal blocking,
and system architecture. System performance of the FPGA-based
prototype machine is presented in Section 4, followed by the con-
clusions drawn in Section 5.

2. HIGH-ORDER FDTD SCHEME

A high-order approximation in FDTD method gives more accurate
approximation, reduces dispersion, and increases valid bandwidth
[37]. In general, Lagrange interpolation [38] and Taylor series ex-
pansion [39] are applied for such approximation. In this research,
the Lagrange polynomial method is used to approximate the sec-
ond-order partial derivative in spatial domain.

2.1. Approximation of second-order partial derivative

In a 4th-order scheme, the Lagrange polynomial is assumed as
equation (1) and pass through five adjacent points

0 1 2 3 4(0,), (,), (2 ,), (3 ,), (4 ,)f f f f f along x axis. The is the

unit of x axis.

 4 3 2

4 3 2 1 0()f x a x a x a x a x a= + + + + (1)

Then we have

4 0

4 3 2

3 1

4 3 2

2 2

4 3 2
1 3

4 3 2
0 4

0 0 0 0 1

1

16 8 4 2 1

81 27 9 3 1

256 64 16 4 1

a f

a f

a f

a f

a f

 =

(2)

Equation (2) can be solved through matrix inversion, and the pa-

rameters
0 1 2 3 4, , , ,a a a a a are obtained as shown in Equation (3)

[17][40].

0 0

0 1 2 3 4
1

0 1 2 3 4
2 2

0 1 2 3 4
3 3

0 1 2 3 4
4 4

25 48 36 16 3

12

35 104 114 56 11

24

5 18 24 14 3

12

4 6 4

24

a f

f f f f f
a

f f f f f
a

f f f f f
a

f f f f f
a

=

− + − + − =

 − + − +

=

− + − + −
=

− + − + =

(3)

Then the second derivative of ()f x equals to Equation (4). In

order to get a centered difference approximation, the middle point

2(2 ,)f of the five adjacent points are chosen to approximate the

second derivative, which is shown in equation (5).

'' 20 1 2 3 4 0 1 2 3 4

4 3

0 1 2 3 4

2

4 6 4 5 18 24 14 3
()

2 2

35 104 114 56 11

12

f f f f f f f f f f
f x x x

f f f f f

− + − + − + − + −
= +

− + − +
+

(4)

 " 0 1 2 3 4

2

16 30 16
(2)

12

f f f f f
f

− + − + −
 =

 (5)

Thus, the approximated parameters for the second derivative is
1 4 5 4 1

(, , , ,)
12 3 2 3 12

− − −
, and

0 1 2 3 4(, , , ,)f f f f f corresponds to the

values of the points

(2, ,), (1, ,), (, ,), (1, ,), (2, ,)i j k i j k i j k i j k i j k− − + + along x axis

in a three dimensional Cartesian space, respectively. The similar
derivation can be conducted for the 6th-order approximation, in
which ()f x is assumed to be

6 5 4 3 2

6 5 4 3 2 1 0()f x a x a x a x a x a x a x a= + + + + + + and seven

adjacent points are required to solve the equation.

2.2. High-order FDTD scheme

Sound wave propagation in a cubic space is governed by the equa-
tion.

 2 2 2 2
2

2 2 2 2
()

P P P P
c

t x y z

= + +

(6)

where P denotes sound pressure, c is the speed in air, t is time, x, y
and z are Cartesian coordinates in a three-dimensional space. To
solve Equation (6), high-order approximation, such as equation
(5) for the 4th-order approximation, is applied to approximate the
second-order partial derivative instead of the second-order center
difference method. In general, the high-order approximation in
time domain increases memory requirement because more data at
previous time steps are involved in computation while the high-
order approximation in spatial domain introduces additional com-
putations due to more neighbor grids are needed to update value
of a grid. In order not to increase memory requirement but just
increase computations of updating sound pressure of a grid, the
second-order approximation in time domain and high-order ap-
proximation in spatial domain are applied on Equation (6), which
are shown as follows.

1 12
, , , , , ,

2 2

2 2, , 2, , 1, , 1, , , ,

2 2

2 , 2, , 2, , 1, , 1, , ,

2 2

2 , , 2

2

2

1 4 5
() ()

12 3 2

1 4 5
() ()

12 3 2

1
(

12

n n n

i j k i j k i j k

n n n n n

i j k i j k i j k i j k i j k

n n n n n

i j k i j k i j k i j k i j k

n

i j k i

P P PP

t t

P P P P P
P

x x

P P P P P
P

y y

P P
P

z

− +

− + − +

− + − +

−

− +
=

− + + + −

=

− + + + −

=

− +

=

, , 2 , , 1 , , 1 , ,

2

4 5
) ()

3 2

n n n n

j k i j k i j k i j kP P P

z

+ − ++ + −

(7)

Letting x y z l = = = and inserting Equation (7) into

Equation (6), the updated equation for the 4th-order scheme is ob-
tained and shown in Equation (8) [40], in which c t l = is

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

 DAFx.3

the Courant number. A similar derivation can be conducted on the
6th-order scheme and Equation (9) is yielded to update sound
pressure of a grid.

1 2

, , 2, , 2, , , 2, , 2,

, , 2 , , 2 1, , 1, , , 1,

2 1

, 1, , , 1 , , 1 , , , ,

1
[(

12

4
) (

3

15
)] (2)

2

n n n n n

i j k i j k i j k i j k i j k

n n n n n

i j k i j k i j k i j k i j k

n n n n n

i j k i j k i j k i j k i j k

P P P P P

P P P P P

P P P P P

+

− + − +

− + − + −

−

+ − +

= − + + +

+ + + + +

+ + + + − −

(8)

1 2

, , 3, , 3, , , 3, , 3,

, , 3 , , 3 2, , 2, , , 2,

, 2, , , 2 , , 2 1, , 1, ,

, 1, , 1, , , 1

1
[(
90

3
) (

20

3
) (

2

n n n n n

i j k i j k i j k i j k i j k

n n n n n

i j k i j k i j k i j k i j k

n n n n n

i j k i j k i j k i j k i j k

n n n

i j k i j k i j k i

P P P P P

P P P P P

P P P P P

P P P P

+

− + − +

− + − + −

+ − + − +

− + −

= + + +

+ + − + +

+ + + + +

+ + + + 1

, , 1 , ,

2

, ,

)]

49
(2)

6

n n

j k i j k

n

i j k

P

P

−

+ −

+ −

(9)

Equations (8) and (9) show that sound pressures of the neigh-
bor grids along axes at previous time steps are needed to update
sound pressure of a grid. The neighboring grids are in six axial
directions. Two and three neighbor grids are in each direction in
the 4th-order and 6th-order schemes, respectively. Computing
sound pressure of a grid requires 11 additions, 2 subtractions, 3
multiplications, and 14 memory accesses in the 4th-order FDTD
scheme while it needs 17 additions, 2 subtractions, 4 multiplica-
tions, and 20 memory accesses in the 6th-order FDTD scheme. In
addition, since the high-order and 2nd-order approximation are
applied on the space domain and time domain, respectively, the
proposed FDTD scheme has high-order accuracy in space domain
while it remains 2nd accuracy in time domain. For example, the
4th-order FDTD scheme provides 4th-order accuracy in space and
2nd-order accuracy in time.

Stability condition and dispersion are important in the FDTD
method. J. Mourik discussed the stability condition and dispersion
of high-order FDTD method and claimed that the 4th-order
scheme was the best in terms of valid bandwidth up to 16th-order
scheme [17][41]. The valid bandwidth of the 4th-order scheme
was about 1.5 times and 1.1 times of those of the 2nd-order and
6th-order schemes, respectively, and the valid bandwidth dropped
a little bit along with every increase of the order after the 4th-
order. The stability condition for the 4th-order and 6th-order

FDTD schemes are 0.5 and 15
68

 , respectively. In

addition, high-order FDTD boundary conditions were also inves-
tigated by J. Mourik [41]. To simplify system design and evalua-
tion, boundary conditions are not discussed in this paper.

3. SYSTEM DESIGN

From Equations (8) and (9), sound pressures of grids at previous
two continuous time steps (time steps n and n-1) are required to
compute sound pressures of grids at time step n+1, and huge
amounts of data are read from and written back to memory as the
grid dimensions are increased. Therefore, it is impossible to store
all data in the on-chip block RAMs of FPGA, which are about
several Megabytes in size, to reduce data access overhead in the
case of large sound spaces even though the size of on-chip block

memories inside current FPGAs has been increased significantly.
Instead, external on-board DDR4 DRAMs on the FPGA card,
which are several Gigabytes in size are needed to store data during
computing. Another challenge is how to reuse data and reduce
memory bandwidth requirement. In this research, spatial blocking
is introduced to reduce the required memory bandwidth between
the computing engine and on-board memory, and temporal block-
ing is employed to reuse data and reduce data accesses to external
memory.

3.1. Spatial Blocking

Spatial blocking is applied to reduce the required on-chip
memory, and it is employed in many deep-pipeline implementa-
tions of stencil computation on FPGA [42-43]. As shown in Fig.
1(a), a large sound space with Nx × Ny × Nz grids is decomposed
into small spatial blocks and each spatial block has Cx × Cy × Nz
grids. A small spatial block is further partitioned into x-y planes
along the z dimension (Fig. 1(b)). Computations are performed
plane by plane in a spatial block while they are carried out along
the x dimension in a plane. Equations (8) and (9) indicate that data
values of three adjacent planes are required to calculate new re-
sults. In the current design, shift registers are introduced as on-
chip buffers to stream in data. As illustrated in Fig. 1, n values of
the plane i+1, all values of the planes i-1 and i are firstly streamed
into a shift register from external memory to compute sound pres-
sures of grids on the plane i, the computing unit then fetches data
from the shift register and computes sound pressures of n grids on
the plane i concurrently. Then, the shift register is shifted right by
n data, and another n new data are written into the head of the
shift register while n old data are evicted from the tail at each
clock cycle. When computations in a plane are completed, data in
a new plane are streamed in the shift register and computation is
moved to the next plane. This procedure is repeated until sound
pressures of all grids in a spatial block are computed, and then
computation is switched to the next spatial block. The shift-
register-based buffer can be efficiently implemented by the on-
chip block RAMs inside an FPGA.

Using shift register minimizes the size of on-chip buffer by
only storing sound pressures of the needed grids in a spatial block.
Furthermore, current FPGAs provide abundance of block RAMs,
therefore, much larger on-chip buffers can be implemented to
store sound pressures of grids in a large spatial block to speed up
data access. In addition, to parallelize computation spatially and
improve utilization efficiency of the external on-board memory
bandwidth, data are coalesced, and computations are vectorized to
calculate n grids concurrently through loop unrolling in each spa-
tial block. If the dimension of a spatial block is Cx × Cy and n
grids are computed in parallel, the depth of the shift register is
calculated through Equation (10).

 2depth rad Cx Cy n= + (10)

where rad is the stencil radius and it is 1, 2, and 3 for the 2nd-
order, 4th-order, and 6th-order FDTD schemes, respectively. In
contrast, the depth of the shift register is 2×rad×Nx×Ny+n if the
spatial blocking is not applied. During implementation on an
FPGA, parts of the shift register will be replicated to support par-
allel accesses because of the limited number of ports in each block
RAM unit. Such replication will require more block RAMs inside
an FPGA.

Computing sound pressures of grids on boundary planes
(front, real, right, and left) of a spatial block needs data from its
neighbor spatial blocks. But these data are not read into the shift

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

 DAFx.4

register during the computations of current spatial block. To avoid
data exchange between adjacent spatial blocks, overlapped block-
ing is applied and such grids on boundary planes of a spatial block
are treated as internal grids of the related neighbor spatial blocks

and computed later. The size of the overlapped parts of neighbor
spatial blocks are linearized to the stencil radius rad and the di-
mension of a spatial block (Cx × Cy).

Figure 1: Spatial blocking

3.2. Temporal Blocking

Temporal blocking allows system to continuously compute sound
pressures of grids of a spatial block at different time steps. Hence,
data access to external memory is reduced. To implement tem-
poral blocking, a computing kernel consisting of several replicated
processing elements (PEs) is designed, and each PE computes
sound pressures of grids in the same spatial block at different time
steps. As shown in Fig. 2, several PEs are cascaded to compute
sound pressures of grids in a same spatial block at continuous time
steps. For example, PE0 calculates sound pressures of grids at time
step n. The computed results are sent to PE1 and then PE1 com-
putes sound pressures of grids in the same spatial block at time
step n+1. Such computation procedure is repeated until the final
PE computes sound pressures of grids at time step n+k-1. Thus,
access to external memory is reduced, and computation is sped up
because sound pressures of a spatial block at several time steps are
computed concurrently. Since computation of a given PE starts
only after the outputs of the previous PE are available, computa-
tion in a PE is always behind its previous PE.

Figure 2: System diagram

3.3. System Design

The system diagram of the FPGA-based sound field rendering
system is presented in Fig. 2, which consists of the Data input

module, Computation engine, and Data output module. The Data
input module streams data of a spatial block from the external
DDR DRAMs on the FPGA card plane by plane, and feeds data to
the computation engine. The computation engine consists of 16
PEs. Each PE computes sound pressures of grids in a spatial block
at a time step, and all PEs are applied to compute sound pressures
of grids in the same spatial block at continuous 16 time steps. The
Data output module writes the computation results back to the ex-
ternal memory.

A PE computes sound pressure of a grid according to its posi-
tion, incidence, and sound pressures of its neighbor grids at previ-
ous time steps. The computed results are sent to the neighbor PE
except for the final PE, in which they are written back to the ex-
ternal memory through the Data output module. As shown in Fig.
3, a PE includes system controller, four buffers (shift_register_p1,
shift_register_p2, shift_register_posi, and
shift_register_incidence), and computing units. The functions of
each module are described as follows.

• System controller. Each grid has an associated position flag,
which will be applied to choose the updated equation in the
computing unit. The system controller reads position flag and
data values at previous time steps from the Data input module
or a neighbor PE according to the computation flow, and
writes them into the related shift registers like
shift_register_p1, shift_register_p2, shift_register_posi, re-
spectively. Then the computing unit computes sound pressures
and sends the computation results to the neighbor PE except
for the final PE, in which the computed results are written
back to the external memory directly through the Data output
module.

• Shift_register_p1, shift_register_p2, shift_register_posi, and
shift_register_incidence. To compute sound pressures of grids
at time step n, data values at time step n-1 and n-2 are
streamed in the shift_register_p1 and shift_register_p2, re-
spectively. In a PE, the input data data_p1 is directly passed to
the next neighbor PE as the data values at time step n-2 while
the computed results are output to the next neighbor PE as the
data values at time step n-1. The data values are exchanged
through high bandwidth channels between neighbor PEs. The

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

 DAFx.5

position flags of grids are kept in the shift_register_posi. Since
all PEs compute sound pressures of grids in a same spatial
block, the position flag of a grid is same in all PEs, and a PE
just passes the position_flag to its next neighbor PE. The inci-
dent data are stored in the shift_register_incidence.

• Computing unit. The computing unit fetches data from four
buffers and compute sound pressures. It is designed based on
the sound field rendering algorithm, namely Equations (8) and
(9) for the 4th-order and 6th-order FDTD schemes.

Figure 3: PE structure

4. PERFORMANCE EVALUATION

The proposed sound field rendering systems based on the 2nd-
order, 4th-order, and 6th-order FDTD schemes were designed us-
ing the OpenCL programming language and implemented using
the FPGA card DE10-Pro from Terasic Company [44]. The FPGA
card contained a Stratix 10 SX FPGA (1SX280HU2F50E1VG)
and 8 GB on-board external DDR4 DRAMs. To verify and esti-
mate the performance of the developed sound field rendering sys-
tems, sound propagation in a three-dimensional shoebox with di-
mension being 16m×8m×8m was analyzed. The incidence was an
impulse, and the number of the computed time steps was 32. As a
comparison, relative counterpart systems were developed using
the C++ programming language, and executed on a desktop ma-
chine with 512 GB DDR4 DRAMs and an Intel Xeon Gold 6212U
processor (24 cores) running at 2.4 GHz. The OpenCL codes were
compiled using the Intel FPGA SDK for OpenCL 19.1 while the
reference C++ codes were compiled using the GNU compiler
(version: 4.8.5) with the option -O3 and -fopenmp to use all 24
processor cores. During analysis, the sound speed was 340 m/s,
sampling rate is 44.1 kHz, the Courant number was

3 151, ,
3 2 68

 in the 2nd-order, 4th-order, 6th-order FDTD

schemes, respectively, and all boundaries were clamped to 0, i.e.
phase-reversing fully reflective boundaries. Data were single-
precision floating point in both the FPGA-based rendering sys-
tems and software simulations. The development environment in
the FPGA-based sound field rendering system and software simu-
lation is shown in Table 1. As presented in Table 1, the memory
size of external and on-chip memories in the FPGA-based system
is much smaller than that of the desktop machine in the software
simulation, and the FPGA system runs at much lower clock fre-
quency over the desktop machine.

4.1. Hardware resource utilization

Table 2 presents the hardware resource utilization of the FPGA-
based sound field rendering systems with the 2nd-order, 4th-order,
and 6th-order FDTD schemes when the size of a spatial block is

128 × 128, the number of PEs is 16 in the computation engine,

and the number of grids computed concurrently is 16. Equations

(8) and (9) indicate that as the order of the FDTD scheme is in-
creased, the number of operations are increased, more data are
streamed in the shift registers, more DSP blocks, which are uti-
lized to implement multipliers, are involved in computation, and
more RAM blocks are required to implement the shift registers to
store data during computing. From Equation (10), the utilized
RAM blocks are significantly affected by the size of a spatial

block. If the size of a spatial block is changed from 128 × 128 to

256 × 256 in the 2nd-order FDTD scheme, the number of utilized

RAM blocks will be increased from 1785 to 5129. In addition,
since the control of shifting and reading out data from the shift
registers at a clock cycle is complicated in the sound field render-
ing system with the higher-order FDTD scheme, the system data
path becomes more complex, and the clock frequency is decreased.

From Table 2, the hardware resources are not utilized effi-
ciently in the current design. The logic blocks, DSP blocks, and
RAM blocks are used by 29%, 6%, and 15% of the relative valid
resources inside the FPGA, respectively. Thus, the size of the spa-
tial block and the number of grids computed in parallel can be fur-
ther increased in the current design. On the other hand, as the size
of the spatial block and the number of grids computed in parallel
are increased, the data path in the hardware system may become
complicated, and clock frequency may be decreased, which will
result in the degradation of computing performance. Therefore,

Table 1: Development environment

 FPGA
software

simulation

computing unit Stratix 10 SX Intel Xeon Gold

6212U

of cores 5760 DSP blocks 24 cores

frequency about 350 MHz 2.4 GHz

on-chip memory
28.6 MB block

RAMs

L1 cache: 1.5 MB

L2 cache: 24 MB

L3 cache: 35.75 MB

external

memory

8 GB

DDR4-2400

512 GB

DDR4-2933

operating

system
CentOS 7.2 CentOS 7.2

programming

language
OpenCL C++

compiler
Intel FPGA SDK

for OpenCL 19.1

GNU compiler

(version: 4.8.5)

fabrication 14 nm 14 nm

 Table 2: Hardware resource utilization

orders
logic

utilization

DSP

blocks

RAM

blocks

clock

frequency

(MHz)

2nd
269,159

(29%)

342

(6%)

1,785

(15%)
357

4th
293,001

(31%)

630

(11%)

3,764

(32%)
355

6th
335,237

(36%)

918

(16%)

4,309

(37%)
337

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

 DAFx.6

the size of the spatial block and the number of grids computed
concurrently cannot be increased unlimitedly.

4.2. Computation time

When the size of the spatial block is 128 × 128, the number of PEs
is 16, and the number of grids computed concurrently is 16, Table
3 presents the average rendering time at each time step in the
FPGA-based sound field rendering systems and software simula-
tions in the case of the FDTD schemes with different orders. Alt-
hough the desktop machine in the software simulations runs at
much higher clock frequency and has much larger external and
on-chip memories than the FPGA-based sound field rendering
systems, the FPGA-based sound field rendering systems speed up
computation by 11 times, 13 times, and 18 times in the 2nd-order,
4th-order, and 6th-order FDTD schemes, respectively, over soft-
ware simulations performed on the desktop machine. In the
FPGA-based rendering system, sound pressures of grids at time
steps n and n-1 are stored into two independent DDR4 DRAMs,
and they are fetched through two independent channels and
streamed into the on-chip shift registers inside FPGA. The over-
head to access data from the shift registers is usually one clock
cycle. In contrast, all sound pressures are stored in external
memory in the software simulations, and external memory is ac-
cessed frequently to fetch or write back data during computation.
The data access is constraint by the memory bandwidth and the
access overhead is very large. Although on-chip caches inside the
processor may reduce the overhead of accessing data, their bene-
fits to the computing performance improvement are limited as the
grid dimension is increased. Moreover, data are reused through
temporal blocking in the FPGA-based system, and sound pres-
sures of a spatial block at 16 continuous time steps are computed
in parallel. This further reduces data access to the external
memory. All these lead to the performance improvement of com-
putation in the FPGA-based sound field rendering system.

In the current performance evaluation, the Courant number is

3 151, ,
3 2 68

 in the 2nd-order, 4th-order, 6th-order FDTD

schemes, respectively. As the order of the FDTD scheme is in-
creased, although the clock frequency of the FPGA-based sound
field rendering system decreased a little bit, the computing time at
each time step is decreased significantly because the grid dimen-
sion becomes smaller and the number of grids is reduced. But it is
worth noting that different Courant numbers will impact upon the
valid bandwidth of the outputs in each FDTD scheme.

4.3. Computational Throughput

The computational throughput stands for the number of grids up-
dated per second at each time step and is calculated by using the
following formula.

_

grid

updated

time step

N
SP

t
=

(11)

where
gridN is the number of grids, and

_time stept is the average

computing time at a time step. Table 4 shows the computational
throughput in the FPGA-based sound field rendering systems and
software simulations in the case of the FDTD schemes with dif-
ferent orders. As shown in Table 4, the FPGA-based system up-
dates grids at much higher speed over the software simulations
because it achieves much better computing performance at each
time step. On the other hand, as the order of the FDTD scheme is
increased from the 2nd to 6th, the computational throughput is
improved about 9.5%.

4.4. Discussion

In the current evaluation, sound propagation in a simple three-
dimensional shoebox was analyzed using the developed FPGA-
based sound field rendering system with the high-order FDTD
method. For a sound space with complex geometries, decomposi-
tion methods to discretize a sound space into a grid mesh are re-
quired. In the hardware system, the data flow to stream data from
the external on-board memory will be changed, and the system
data path may become complicated. Furthermore, all boundaries
were clamped to 0 in current evaluations. If complex boundary
conditions are adopted, the updated equations for the grids on the
boundaries are needed to be derived from the high-order FDTD
method, and the computing unit inside a PE will be changed in the
FPGA-based sound field rendering systems because the updated
equation is different in accordance with the position of a grid.

On the other hand, the computing pattern in sound field ren-
dering with FDTD methods is stencil computation in principle, in
which the bottleneck of computing performance is memory band-
width. In the current design, the spatial blocking is applied to alle-
viate the required memory bandwidth, and the temporal blocking
is adopted to reuse data and reduce memory access to external
memory. Although FPGA provides on-chip block memories with
large bandwidth, the size of on-chip block memories is limited,
such as several Mega bytes. And the FPGA card DE10-Pro pro-
vides large size on-board external memory, which is 8GB DDR4-
2400 DRAMs. In the FPGA-based acceleration system, computa-
tion is sped up through customization of data path according to the
data flow during computing and parallelism of PEs. In contrast,
current GPUs provide several Giga bytes high speed and high
memory bandwidth (HBM) memories, and data access overhead
will be reduced significantly. Moreover, development of an
FPGA-based system needs much hardware knowledge even
though high level synthesis is widely applied in recent years. De-
velopment of a GPU-based system is relatively easier than that of
FPGA-based system. All these results in that GPUs are more pop-
ular in computing than FPGAs. At next step, a sound field render-
ing system will be developed using GPU and compared with the

Table 4: Computational throughput (Ggrids/s)

orders FPGA software simulation

2nd 8.8457 0.8015

4th 8.3604 0.6235

6th 9.6882 0.5207

Table 3: Rendering time per time step (s)

orders FPGA software simulation

2nd 0.0486 0.5363

4th 0.0333 0.4458

6th 0.0238 0.4437

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

 DAFx.7

proposed FPGA-based sound field rendering system to validate
which platform is better for sound field rendering.

5. CONCLUSIONS

High-order FDTD method provides more accurate approximation
and smaller dispersion. The sound field rendering with FDTD
method is computationally intensive and memory intensive. In this
research, an FPGA-based sound field rendering system based on
the high-order FDTD method is developed to speed up computa-
tion. The spatial blocking is applied to reduce the size of the re-
quired on-chip buffer and memory bandwidth, and the temporal
blocking is adopted to reuse data and compute sound pressures of
grids in the same spatial block at 16 continuous time steps in par-
allel. In the sound field rendering system with the 2nd-order, 4th-
order, and 6th-order FDTD schemes, the FPGA-based system
achieves much higher performance in computing and computa-
tional throughput over the software simulations carried out in a
desktop machine even though the FPGA-based rendering systems
run at much lower clock frequency and has smaller on-chip and
external on-board memories. The evaluation results demonstrate
that FPGAs are promising for sound field rendering. In future
work, the decomposition methods to discretize a sound space with
complex geometries into a grid mesh and the high-order FDTD
schemes with complicated boundary conditions will be studied,
and a real-time sound field rendering system based on the pro-
posed architecture and high-order FDTD methods with complicat-
ed boundary conditions will be investigated, in which input inci-
dence, computation, and computed results are all handled at real
time. As a comparison, a counterpart system based on GPUs will
be developed to compared with the FPGA-based sound field ren-
dering system and explore the suitable platform for sound field
rendering.

6. ACKNOWLEDGMENTS

Thanks for Intel’s donation of the FPGA card DE10-Pro and EDA
tools through its University Program. This work was supported by
the JSPS KAKENHI Grant Number JP22K12123.

7. REFERENCES

[1] S. Kitic, N. Bertin, and R. Gribonval, “Hearing behind walls:
localizing sources in the room next door with cosparsity,” in

Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2014,
pp. 3087 - 3091.

[2] N. Antonello, T. Waterschoot, M. Moonen, and P. Naylor,
“Source localization and signal reconstruction in a reverber-
ant field using the FDTD method,” in Proc. Eur. Signal Pro-

cess. Conf., 2014, pp. 301 - 305.

[3] N. Bertin, S. Kiti, and R. Gribonval, “Joint estimation of

sound source location and boundary impedance with physics-
driven cosparse regularization”, in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., 2016, pp. 6340 - 6344.

[4] R. Mehra and D. Manocha, “Wave-based sound propaga-

tion for VR applications”, in Proc. IEEE Virtual Real.,

Minnesota, USA, 2014.

[5] N. Raghuvanshi, R. Narain, and M. C. Lin, “Efficient and

Accurate Sound Propagation Using Adaptive Rectangular
Decomposition,” IEEE Trans. Visualization and Computer

Graphics, vo. 15, no. 5, pp. 789 - 801, 2009.

[6] V. Valimaki, J. D. Parker, L. Savioja, J. O. Smith, and J. S.

Abel, “Fifty Years of Artificial Reverberation,” IEEE Trans.
Audio Speech Lang. Process., vol. 20, no. 5, pp. 1421 - 1448,

2012.
[7] N. Antonello, T. Waterschoot, M. Moonen, and P. Naylor,

“Identification of surface acoustic impedances in a reverber-
ant room using the FDTD method,” in Proc. IEEE Int. Work-

shop Acoust. Signal Enhancement, pp. 114 - 118, 2014.
[8] Botteldooren, “Acoustical Finite-Difference Time-Domain

Simulation in a quasi-cartesian node,” J. Acoust. Soc. Am.,
vol. 95, pp. 2313 - 2319, 1994.

[9] D. Botteldooren, “Finite-Difference Time-Domain Simula-
tion of Low-Frequency Room Acoustic Problems,” J. Acoust.

Soc. Am., vol. 98, pp. 3302 - 3308, 1995.
[10] O. Chiba, T. Kashiwa, H. Shimoda, S. Kagami, and I. Fukai,

“Analysis of Sound Fields in Three-Dimensional Space by
the Time-Dependent Finite-Difference Method based on the

Leap Frog Algorithm,” J. Acoust. Soc. Jpn., vol. 49, pp. 551 -
562, 1993.

[11] L. Savioja, T. Rinne, and T. Takala, “Simulation of room

acoustics with a 3-D finite difference mesh,” in Proc. Int.
Computer Music Conf. (ICMC), Aarhus, Denmark, Sept.

1994, pp. 463-466.
[12] J. O. Smith III, “Physical Modeling Using Digital Wave-

guides,” Computer Music Journal, vol. 16, no. 4, pp. 74 - 91,
1992.

[13] L. Savioja, and V. Valimaki. “Interpolated Rectangular 3-D
Digital Waveguide Mesh Algorithms with Frequency Warp-

ing,” IEEE Trans. Speech Audio Process., vol. 11, pp. 783 -
790, 2003.

[14] G. R. Campos and D. M. Howard, “On the Computational
Efficiency of Different Waveguide Mesh Topologies for

Room Acoustic Simulation,” IEEE Trans. Audio Speech
Lang. Process., vol. 13, no. 5, pp. 1063 - 1072, 2005.

[15] D. Murphy, A. Kelloniemi, J. Mullen, and S. Shelley,
“Acoustic Modeling Using the Digital Waveguide Mesh,”

IEEE Signal Process Magazine, vol. 24, no. 2, pp. 55 - 66,
2007.

[16] K. Kowalczyk and M. Walstijn, “Room Acoustics Simula-
tion Using 3-D Compact Explicit FDTD Schemes,” IEEE

Trans. Audio Speech Lang. Process., vol. 19, no. 1, pp. 34 -

46, 2011.
[17] J. Mourik and D. Murphy, “Explicit Higher-Order FDTD

Schemes for 3D Room Acoustic Simulation,” IEEE/ACM
Trans. Audio Speech Lang. Process., vol. 22, no. 12, pp.

2003 - 2011, 2014.
[18] B. Hamilton and S. Bilbao, “Fourth-order and optimised fi-

nite difference schemes for the 2-D wave equation,” in Proc.
Digital Audio Effects (DAFx’13), Maynooth, Ireland, Sept.

2013, pp. 2 - 6.
[19] B. Hamilton, S. Bilbao, and C. J. Webb, “Revisiting implicit

finite difference schemes for 3D room acoustics simulations
on GPU,” in Proc. Digital Audio Effects (DAFx’14), Erlan-

gen, Germany, Sept. 2014, pp. 41 - 48.
[20] B. Hamilton and S. Bilbao, “FDTD Methods for 3-D Room

Acoustics Simulation with High-Order Accuracy in Space
and Time,” IEEE/ACM Trans. Audio Speech Lang. Process.,

vol. 25, pp. 2112 - 2124, 2017.
[21] T. Ishii, T. Tsuchiya, K. Okubo, “Three-Dimensional Sound

Field Analysis Using Compact Explicit Finite Difference
Time Domain Method with Graphics Processing Unit Cluster

System,” Jpn. J. Appl. Phys. vol. 52, pp. 07HC11, 2013.

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

 DAFx.8

[22] T. Tsuchiya and N. Maruta, “Three-Dimensional Compact

Explicit Finite Difference Time Domain Scheme with Densi-
ty Variation,” Jpn J. Appl. Phys. vol. 57, pp. 07LC01, 2018.

[23] C. Spa, A. Rey, and E. Hernandez, “A GPU Implementation
of an Explicit Compact FDTD Algorithm with a Digital Im-

pedance Filter for Room Acoustics Applications,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 23,

no. 8, pp. 1368 - 1380, 2015.
[24] M. Tanaka, T. Tsuchiya, and K. Okubo, “Two-Dimensional

Numerical Analysis of Nonlinear Sound Wave Propagation
Using Constrained Interpolation Profile Method Including

Nonlinear Effect in Advection Equation,” Jpn. J. Appl. Phys.,
vol. 50, pp. 07HE17, 2011.

[25] L. Savioja, “Real-time 3D finite-difference time-domain

simulation of low-and mid-frequency room acoustics,” in

Proc. Digital Audio Effects (DAFx’10), Graz, Austria, Sept.

2010.
[26] A. Southern, D. Murphy, G. Campos, and P. Dias, “Finite

difference room acoustic modelling on a general purpose
graphics processing unit,” in Proc. 128th Audio Engineering

Society Convention, London, UK, May 2010, pp. 1393 -
1403.

[27] L. Savioja, D. Manocha, and M. Lin, “Use of GPUs in room

acoustic modeling and auralization,” in Proc. Int. Symposium
on Room Acoustics (ISRA), Melbourne, Australia, August

2010.
[28] C. Webb and S. Bilbao, “Virtual room acoustics: a compari-

son of techniques for computing 3D-FDTD schemes using
CUDA,” in Proc. 130th Audio Engineering Society Conven-

tion, London, UK, May 2011, pp. 1163–1169.
[29] C. Webb and S. Bilbao, “Computing room acoustics with

CUDA-3D FDTD schemes with boundary losses and viscosi-
ty,” in Proc. Int. Conf. on Acoustics Speech and Signal Pro-

cessing (ICASSP), Prague, Czech Republic, May 2011, pp.
317–320.

[30] Y. Y. Tan, Y. Inoguchi, E. Sugawara, M. Otani, Y. Iwaya, Y.
Sato, H. Matsuoka, and T. Tsuchiya, “A Real-Time Sound

Field Renderer based on Digital Huygens’ Model,” J. Sound
Vib., vol. 330, pp. 4302 - 4312, 2011.

[31] Y. Y. Tan, Y. Inoguchi, Y. Sato, M. Otani, Y. Iwaya, H.
Matsuoka, and T. Tsuchiya, “A Hardware-Oriented Finite-

Difference Time-Domain Algorithm for Sound Field Render-

ing,” Jpn. J. Appl. Phys., vol. 52, pp. 07HC03, 2013.
[32] Y. Y. Tan, Y. Inoguchi, Y. Sato, M. Otani, Y. Iwaya, H.

Matsuoka, and T. Tsuchiya, “A Real-Time Sound Rendering
System based on the Finite-Difference Time-Domain Algo-

rithm,” Jpn. J. Appl. Phys., vol. 53, pp. 07KC14, 2014.
[33] Y.Y. Tan, Y. Inoguchi, M. Otani, Y. Iwaya, and T. Tsuchiya,

“A Real-Time Sound Field Rendering Processor,” Appl. Sci.,
vol. 8, no. 35, 2018.

[34] Y. Y. Tan and T. Imamura, “A FPGA-based accelerator for

sound field rendering”, Proc. Digital Audio Effect, 2019.

[35] J. Saarelma, J. Califa, and R. Mehra, “Challenges of distrib-
uted real-time finite-difference time-domain room acoustic

simulation for auralization,” in Proc. AES Int. Conf. Spatial
Reproduction -Aesthetics and Science, Tokyo, Japan, July

2018, PP-1.
[36] Y. Y. Tan and T. Imamura, “An FPGA-based sound field

rendering system”, in Proc. IEEE Cluster, online, 2020.
[37] M. Ciment and S. Leventhal, “Higher Order Compact Implic-

it Schemes for the Wave Equation,” Math. Comput., vol. 29,
no. 132, pp. 985-994, 1975.

[38] P. Deuflhard and A. Hohmann, Numerical Analysis in Mod-

ern Scientific Computing, Springer-Verlag, New York, 2nd
edition, 2003.

[39] S. Sakamoto, “Phase-Error Analysis of High-Order Finite
Difference Time Domain Scheme and its Influence on Calcu-

lation Results of Impulse Response in Closed Sound Field,”
Acoust. Sci. Technol., vol. 28, no. 5, pp. 295-309, 2007.

[40] Y. Y. Tan and Toshiyuki Imamura, “Design and implementa-
tion of high-order FDTD method for room acoustics,” in

Proc. 41th USE, Tokyo, Japan, 2020.
[41] J. Mourik, Higher-order Finite Difference Time Domain Al-

gorithms for Room Acoustic Modelling, PhD Thesis, Univer-
sity of York, 2016.

[42] H. Zohouri, A. Podobas, and S. Matsuoka, “Combined spa-
tial and temporal blocking for high-performance stencil com-

putation on FPGAs using OpenCL”, in Proc. FPGA, 2018.
[43] Yiyu Tan, Toshiyuki Imamura, Masaaki Kondo, “FPGA-

based Acceleration of FDTD Sound Field Rendering”, J. Au-
dio Eng. Soc., vol. 69, no. 7/8, pp. 542–556, 2021.

[44] https://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=13&N
o=1144&PartNo=1

