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  ABSTRACT 

Sound field rendering with finite difference time domain (FDTD) 
method is computation-intensive and memory-intensive. This re-
search investigates an FPGA-based acceleration system for sound 
field rendering with the high-order FDTD method, in which spa-
tial and temporal blockings are applied to alleviate external 
memory bandwidth bottleneck and reuse data, respectively. After 
implemented by using the FPGA card DE10-Pro, the FPGA-based 
sound field rendering systems outperform the software simula-
tions conducted on a desktop machine with 512 GB DRAMs and a 
Xeon Gold 6212U processor (24 cores) running at 2.4 GHz by 11 
times, 13 times, and 18 times in computing performance in the 
case of the 2nd-order, 4th-order, and 6th-order FDTD schemes, 
respectively, even though the FPGA-based sound field rendering 
systems run at much lower clock frequency and have much small-
er on-chip and external memory. 

1. INTRODUCTION 

Room acoustic simulation exhibit numerical methods to model 
sound propagation phenomena in spatial and time domain, and are 
applied widely in many engineering and scientific applications, 
such as sound source localization [1-3], virtual reality [4-5], artifi-
cial reverberation [6], boundary impedance estimation [7], and so 
on. Many analysis algorithms have been proposed for sound field 
rendering in room acoustics, in particular, FDTD method, which 
has already become one of essential methods in room acoustics 
since it was introduced to analyse acoustical behaviour by O. Chi-
ba et al., D. Botteldooren et al., and L. Savioja et al. [8-11]. FDTD 
method solves wave equation with a finite number of stencil 
points in a discretized sound space using numerical method, and 
provides much higher accuracy over other methods like geometric 
methods. The inherent problem of FDTD method is dispersion 
error, and oversampling in spatial grids is usually required to sup-
press the numerical dispersion. As a result, computation and 
memory demand are increased significantly. Although many 
works were done at algorithmic level to solve this problem, such 
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as digital waveguide mesh topologies [12-15], explicit second-
order accurate schemes [16], high-order explicit “large-star” 
schemes [17], and two-step explicit FDTD schemes with high-
order accuracy [18-20], these approaches still suffer from high 
computational cost. In general, to solve wave equations using 
FDTD method, computing capability is increased as the fourth 
power of frequency and is proportional with the volume of a 
sound space [6], and the size of the required memory is third pow-
er of frequency. Given the auditory range of humans (20 Hz-20 
kHz), analyzing sound wave propagation in a space corresponding 
to a concert hall or a cathedral (e.g. volume of 10000-15000 m3) 
for the maximum simulation frequency of 20 kHz requires peta-
flops of computing capability and terabytes of memory. This re-
quires computing systems to have huge computational capability 
and large memory bandwidth.  

In recent years, graphic processing units (GPUs) and field 
programmable gate arrays (FPGAs) have been applied to speed up 
computation in sound field rendering because of their much higher 
parallel computational capability over traditional general-purpose 
processors [21-36]. In particular, latest FPGAs contain thousands 
of hardened floating-point arithmetic units, several Megabytes of 
on-chip block memories to cache data, and millions of reconfigu-
rable logic blocks. These on-chip hardware resources may be ap-
plied to directly implement sound wave equations to accelerate 
computation in contrast with software simulations in GPUs and 
general-purpose processors. Furthermore, system data paths can 
be customized in accordance with the data flow of a sound field 
rendering system to improve computing performance. On the oth-
er hand, the high-order FDTD method provides more accurate ap-
proximation on the second-order partial derivative and reduces 
dispersion. In this research, an FPGA-based accelerator is devel-
oped to speed up computation in sound field rendering with the 
high-order FDTD method. The main contributions of this work 
are summarized as follows. 
(1) A high-order FDTD method. The related formula is derived, 

including approximation of the second partial derivative us-
ing Lagrange polynomial interpolation, the updated equation 
of 4th-order and 6th-order FDTD schemes. 

(2) Design and implementation of an FPGA-based sound field 
rendering system with the high-order FDTD method. Spatial 
and temporal blockings are adopted to reduce memory 
bandwidth requirement and reuse data. 

(3) Performance evaluation and analysis based on the prototype 
machine. The proposed rendering system is designed using 
OpenCL and implemented using the FPGA card DE10-Pro. 
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Its performance is evaluated through analyzing sound prop-
agation in a three-dimensional shoebox with dimensions be-
ing 16m×8m×8m, incidence being an impulse, and sampling 
rate of sound being 44.1 kHz. Compared with the software 
simulations performed on a desktop machine with 512 GB 
DDR4 RAMs and an Intel’s Xeon Gold 6212U processor 
running at 2.4 GHz, the proposed rendering systems speed 
up computation by 11 times, 13 times, and 18 times in the 
2nd-order, 4th-order, and 6th-order FDTD schemes, respec-
tively.  

The rest of this paper is organized as follows. The high-order 
FDTD schemes are introduced in Section 2. In Section 3, system 
design is described, including spatial blocking, temporal blocking, 
and system architecture. System performance of the FPGA-based 
prototype machine is presented in Section 4, followed by the con-
clusions drawn in Section 5.  

2. HIGH-ORDER FDTD SCHEME 

A high-order approximation in FDTD method gives more accurate 
approximation, reduces dispersion, and increases valid bandwidth 
[37]. In general, Lagrange interpolation [38] and Taylor series ex-
pansion [39] are applied for such approximation. In this research, 
the Lagrange polynomial method is used to approximate the sec-
ond-order partial derivative in spatial domain. 

2.1. Approximation of second-order partial derivative 

In a 4th-order scheme, the Lagrange polynomial is assumed as 
equation (1) and pass through five adjacent points 

0 1 2 3 4(0, ), ( , ), (2 , ), (3 , ), (4 , )f f f f f     along x axis. The   is the 

unit of x axis. 
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Equation (2) can be solved through matrix inversion, and the pa-

rameters 
0 1 2 3 4, , , ,a a a a a  are obtained as shown in Equation (3) 

[17][40].  
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Then the second derivative of ( )f x  equals to Equation (4). In 

order to get a centered difference approximation, the middle point 

2(2 , )f  of the five adjacent points are chosen to approximate the 

second derivative, which is shown in equation (5). 
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Thus, the approximated parameters for the second derivative is 
1 4 5 4 1

( , , , , )
12 3 2 3 12

− − −
, and 

0 1 2 3 4( , , , , )f f f f f  corresponds to the 

values of the points 

( 2, , ), ( 1, , ), ( , , ), ( 1, , ), ( 2, , )i j k i j k i j k i j k i j k− − + + along x axis 

in a three dimensional Cartesian space, respectively. The similar 
derivation can be conducted for the 6th-order approximation, in 
which ( )f x  is assumed to be 

6 5 4 3 2

6 5 4 3 2 1 0( )f x a x a x a x a x a x a x a= + + + + + +  and seven 

adjacent points are required to solve the equation.  

2.2. High-order FDTD scheme 

Sound wave propagation in a cubic space is governed by the equa-
tion.  

 2 2 2 2
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where P denotes sound pressure, c is the speed in air, t is time, x, y 
and z are Cartesian coordinates in a three-dimensional space. To 
solve Equation (6), high-order approximation, such as equation 
(5) for the 4th-order approximation, is applied to approximate the 
second-order partial derivative instead of the second-order center 
difference method. In general, the high-order approximation in 
time domain increases memory requirement because more data at 
previous time steps are involved in computation while the high-
order approximation in spatial domain introduces additional com-
putations due to more neighbor grids are needed to update value 
of a grid. In order not to increase memory requirement but just 
increase computations of updating sound pressure of a grid, the 
second-order approximation in time domain and high-order ap-
proximation in spatial domain are applied on Equation (6), which 
are shown as follows.  
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Letting x y z l =  =  =   and inserting Equation (7) into 

Equation (6), the updated equation for the 4th-order scheme is ob-
tained and shown in Equation (8) [40], in which c t l =    is 
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the Courant number. A similar derivation can be conducted on the 
6th-order scheme and Equation (9) is yielded to update sound 
pressure of a grid. 
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Equations (8) and (9) show that sound pressures of the neigh-
bor grids along axes at previous time steps are needed to update 
sound pressure of a grid. The neighboring grids are in six axial 
directions. Two and three neighbor grids are in each direction in 
the 4th-order and 6th-order schemes, respectively. Computing 
sound pressure of a grid requires 11 additions, 2 subtractions, 3 
multiplications, and 14 memory accesses in the 4th-order FDTD 
scheme while it needs 17 additions, 2 subtractions, 4 multiplica-
tions, and 20 memory accesses in the 6th-order FDTD scheme. In 
addition, since the high-order and 2nd-order approximation are 
applied on the space domain and time domain, respectively, the 
proposed FDTD scheme has high-order accuracy in space domain 
while it remains 2nd accuracy in time domain. For example, the 
4th-order FDTD scheme provides 4th-order accuracy in space and 
2nd-order accuracy in time. 

Stability condition and dispersion are important in the FDTD 
method. J. Mourik discussed the stability condition and dispersion 
of high-order FDTD method and claimed that the 4th-order 
scheme was the best in terms of valid bandwidth up to 16th-order 
scheme [17][41]. The valid bandwidth of the 4th-order scheme 
was about 1.5 times and 1.1 times of those of the 2nd-order and 
6th-order schemes, respectively, and the valid bandwidth dropped 
a little bit along with every increase of the order after the 4th-
order. The stability condition for the 4th-order and 6th-order 

FDTD schemes are 0.5   and 15
68

  , respectively. In 

addition, high-order FDTD boundary conditions were also inves-
tigated by J. Mourik [41]. To simplify system design and evalua-
tion, boundary conditions are not discussed in this paper. 

3. SYSTEM DESIGN 

From Equations (8) and (9), sound pressures of grids at previous 
two continuous time steps (time steps n and n-1) are required to 
compute sound pressures of grids at time step n+1, and huge 
amounts of data are read from and written back to memory as the 
grid dimensions are increased. Therefore, it is impossible to store 
all data in the on-chip block RAMs of FPGA, which are about 
several Megabytes in size, to reduce data access overhead in the 
case of large sound spaces even though the size of on-chip block 

memories inside current FPGAs has been increased significantly. 
Instead, external on-board DDR4 DRAMs on the FPGA card, 
which are several Gigabytes in size are needed to store data during 
computing. Another challenge is how to reuse data and reduce 
memory bandwidth requirement. In this research, spatial blocking 
is introduced to reduce the required memory bandwidth between 
the computing engine and on-board memory, and temporal block-
ing is employed to reuse data and reduce data accesses to external 
memory.  

3.1. Spatial Blocking 

Spatial blocking is applied to reduce the required on-chip 
memory, and it is employed in many deep-pipeline implementa-
tions of stencil computation on FPGA [42-43]. As shown in Fig. 
1(a), a large sound space with Nx × Ny × Nz grids is decomposed 
into small spatial blocks and each spatial block has Cx × Cy × Nz 
grids. A small spatial block is further partitioned into x-y planes 
along the z dimension (Fig. 1(b)). Computations are performed 
plane by plane in a spatial block while they are carried out along 
the x dimension in a plane. Equations (8) and (9) indicate that data 
values of three adjacent planes are required to calculate new re-
sults. In the current design, shift registers are introduced as on-
chip buffers to stream in data. As illustrated in Fig. 1, n values of 
the plane i+1, all values of the planes i-1 and i are firstly streamed 
into a shift register from external memory to compute sound pres-
sures of grids on the plane i, the computing unit then fetches data 
from the shift register and computes sound pressures of n grids on 
the plane i concurrently. Then, the shift register is shifted right by 
n data, and another n new data are written into the head of the 
shift register while n old data are evicted from the tail at each 
clock cycle. When computations in a plane are completed, data in 
a new plane are streamed in the shift register and computation is 
moved to the next plane. This procedure is repeated until sound 
pressures of all grids in a spatial block are computed, and then 
computation is switched to the next spatial block. The shift-
register-based buffer can be efficiently implemented by the on-
chip block RAMs inside an FPGA. 

Using shift register minimizes the size of on-chip buffer by 
only storing sound pressures of the needed grids in a spatial block. 
Furthermore, current FPGAs provide abundance of block RAMs, 
therefore, much larger on-chip buffers can be implemented to 
store sound pressures of grids in a large spatial block to speed up 
data access. In addition, to parallelize computation spatially and 
improve utilization efficiency of the external on-board memory 
bandwidth, data are coalesced, and computations are vectorized to 
calculate n grids concurrently through loop unrolling in each spa-
tial block. If the dimension of a spatial block is Cx × Cy and n 
grids are computed in parallel, the depth of the shift register is 
calculated through Equation (10).  

 2depth rad Cx Cy n=    +  (10) 

where rad is the stencil radius and it is 1, 2, and 3 for the 2nd-
order, 4th-order, and 6th-order FDTD schemes, respectively. In 
contrast, the depth of the shift register is 2×rad×Nx×Ny+n if the 
spatial blocking is not applied. During implementation on an 
FPGA, parts of the shift register will be replicated to support par-
allel accesses because of the limited number of ports in each block 
RAM unit. Such replication will require more block RAMs inside 
an FPGA.  

Computing sound pressures of grids on boundary planes 
(front, real, right, and left) of a spatial block needs data from its 
neighbor spatial blocks. But these data are not read into the shift 
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register during the computations of current spatial block. To avoid 
data exchange between adjacent spatial blocks, overlapped block-
ing is applied and such grids on boundary planes of a spatial block 
are treated as internal grids of the related neighbor spatial blocks 

and computed later. The size of the overlapped parts of neighbor 
spatial blocks are linearized to the stencil radius rad and the di-
mension of a spatial block (Cx × Cy).  

 
Figure 1: Spatial blocking 

3.2. Temporal Blocking 

Temporal blocking allows system to continuously compute sound 
pressures of grids of a spatial block at different time steps. Hence, 
data access to external memory is reduced. To implement tem-
poral blocking, a computing kernel consisting of several replicated 
processing elements (PEs) is designed, and each PE computes 
sound pressures of grids in the same spatial block at different time 
steps. As shown in Fig. 2, several PEs are cascaded to compute 
sound pressures of grids in a same spatial block at continuous time 
steps. For example, PE0 calculates sound pressures of grids at time 
step n. The computed results are sent to PE1 and then PE1 com-
putes sound pressures of grids in the same spatial block at time 
step n+1. Such computation procedure is repeated until the final 
PE computes sound pressures of grids at time step n+k-1. Thus, 
access to external memory is reduced, and computation is sped up 
because sound pressures of a spatial block at several time steps are 
computed concurrently. Since computation of a given PE starts 
only after the outputs of the previous PE are available, computa-
tion in a PE is always behind its previous PE.  
 

 

Figure 2: System diagram 

3.3. System Design 

The system diagram of the FPGA-based sound field rendering 
system is presented in Fig. 2, which consists of the Data input 

module, Computation engine, and Data output module. The Data 
input module streams data of a spatial block from the external 
DDR DRAMs on the FPGA card plane by plane, and feeds data to 
the computation engine. The computation engine consists of 16 
PEs. Each PE computes sound pressures of grids in a spatial block 
at a time step, and all PEs are applied to compute sound pressures 
of grids in the same spatial block at continuous 16 time steps. The 
Data output module writes the computation results back to the ex-
ternal memory.  

A PE computes sound pressure of a grid according to its posi-
tion, incidence, and sound pressures of its neighbor grids at previ-
ous time steps. The computed results are sent to the neighbor PE 
except for the final PE, in which they are written back to the ex-
ternal memory through the Data output module. As shown in Fig. 
3, a PE includes system controller, four buffers (shift_register_p1, 
shift_register_p2, shift_register_posi, and 
shift_register_incidence), and computing units. The functions of 
each module are described as follows. 

• System controller. Each grid has an associated position flag, 
which will be applied to choose the updated equation in the 
computing unit. The system controller reads position flag and 
data values at previous time steps from the Data input module 
or a neighbor PE according to the computation flow, and 
writes them into the related shift registers like 
shift_register_p1, shift_register_p2, shift_register_posi, re-
spectively. Then the computing unit computes sound pressures 
and sends the computation results to the neighbor PE except 
for the final PE, in which the computed results are written 
back to the external memory directly through the Data output 
module. 

• Shift_register_p1, shift_register_p2, shift_register_posi, and 
shift_register_incidence. To compute sound pressures of grids 
at time step n, data values at time step n-1 and n-2 are 
streamed in the shift_register_p1 and shift_register_p2, re-
spectively. In a PE, the input data data_p1 is directly passed to 
the next neighbor PE as the data values at time step n-2 while 
the computed results are output to the next neighbor PE as the 
data values at time step n-1. The data values are exchanged 
through high bandwidth channels between neighbor PEs. The 
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position flags of grids are kept in the shift_register_posi. Since 
all PEs compute sound pressures of grids in a same spatial 
block, the position flag of a grid is same in all PEs, and a PE 
just passes the position_flag to its next neighbor PE. The inci-
dent data are stored in the shift_register_incidence.  

• Computing unit. The computing unit fetches data from four 
buffers and compute sound pressures. It is designed based on 
the sound field rendering algorithm, namely Equations (8) and 
(9) for the 4th-order and 6th-order FDTD schemes.  

 

Figure 3: PE structure 

4. PERFORMANCE EVALUATION 

The proposed sound field rendering systems based on the 2nd-
order, 4th-order, and 6th-order FDTD schemes were designed us-
ing the OpenCL programming language and implemented using 
the FPGA card DE10-Pro from Terasic Company [44]. The FPGA 
card contained a Stratix 10 SX FPGA (1SX280HU2F50E1VG) 
and 8 GB on-board external DDR4 DRAMs. To verify and esti-
mate the performance of the developed sound field rendering sys-
tems, sound propagation in a three-dimensional shoebox with di-
mension being 16m×8m×8m was analyzed. The incidence was an 
impulse, and the number of the computed time steps was 32. As a 
comparison, relative counterpart systems were developed using 
the C++ programming language, and executed on a desktop ma-
chine with 512 GB DDR4 DRAMs and an Intel Xeon Gold 6212U 
processor (24 cores) running at 2.4 GHz. The OpenCL codes were 
compiled using the Intel FPGA SDK for OpenCL 19.1 while the 
reference C++ codes were compiled using the GNU compiler 
(version: 4.8.5) with the option -O3 and -fopenmp to use all 24 
processor cores. During analysis, the sound speed was 340 m/s, 
sampling rate is 44.1 kHz, the Courant number   was 

3 151, ,
3 2 68

 in the 2nd-order, 4th-order, 6th-order FDTD 

schemes, respectively, and all boundaries were clamped to 0, i.e. 
phase-reversing fully reflective boundaries. Data were single-
precision floating point in both the FPGA-based rendering sys-
tems and software simulations. The development environment in 
the FPGA-based sound field rendering system and software simu-
lation is shown in Table 1. As presented in Table 1, the memory 
size of external and on-chip memories in the FPGA-based system 
is much smaller than that of the desktop machine in the software 
simulation, and the FPGA system runs at much lower clock fre-
quency over the desktop machine.  

4.1.  Hardware resource utilization 

Table 2 presents the hardware resource utilization of the FPGA-
based sound field rendering systems with the 2nd-order, 4th-order, 
and 6th-order FDTD schemes when the size of a spatial block is 

128 × 128, the number of PEs is 16 in the computation engine, 

and the number of grids computed concurrently is 16. Equations 

(8) and (9) indicate that as the order of the FDTD scheme is in-
creased, the number of operations are increased, more data are 
streamed in the shift registers, more DSP blocks, which are uti-
lized to implement multipliers, are involved in computation, and 
more RAM blocks are required to implement the shift registers to 
store data during computing. From Equation (10), the utilized 
RAM blocks are significantly affected by the size of a spatial 

block. If the size of a spatial block is changed from 128 × 128 to 

256 × 256 in the 2nd-order FDTD scheme, the number of utilized 

RAM blocks will be increased from 1785 to 5129. In addition, 
since the control of shifting and reading out data from the shift 
registers at a clock cycle is complicated in the sound field render-
ing system with the higher-order FDTD scheme, the system data 
path becomes more complex, and the clock frequency is decreased.  

From Table 2, the hardware resources are not utilized effi-
ciently in the current design. The logic blocks, DSP blocks, and 
RAM blocks are used by 29%, 6%, and 15% of the relative valid 
resources inside the FPGA, respectively. Thus, the size of the spa-
tial block and the number of grids computed in parallel can be fur-
ther increased in the current design. On the other hand, as the size 
of the spatial block and the number of grids computed in parallel 
are increased, the data path in the hardware system may become 
complicated, and clock frequency may be decreased, which will 
result in the degradation of computing performance. Therefore, 

Table 1: Development environment 

  FPGA 
software  

simulation 

computing unit Stratix 10 SX Intel Xeon Gold 

6212U  

# of cores 5760 DSP blocks 24 cores 

frequency about 350 MHz 2.4 GHz 

on-chip memory 
28.6 MB block 

RAMs 

L1 cache: 1.5 MB 

L2 cache: 24 MB 

L3 cache: 35.75 MB 

external 

memory 

8 GB  

DDR4-2400 

512 GB  

DDR4-2933 

operating  

system 
CentOS 7.2 CentOS 7.2 

programming  

language  
OpenCL C++ 

compiler 
Intel FPGA SDK 

for OpenCL 19.1 

GNU compiler 

(version: 4.8.5) 

fabrication  14 nm 14 nm 

 Table 2: Hardware resource utilization 

orders 
logic  

utilization 

DSP 

blocks 

RAM 

blocks 

clock  

frequency 

(MHz) 

2nd  
269,159 

(29%) 

342 

(6%) 

1,785 

(15%) 
357 

4th 
293,001 

(31%) 

630 

(11%) 

3,764 

(32%) 
355 

6th 
335,237 

(36%) 

918 

(16%) 

4,309 

(37%) 
337 
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the size of the spatial block and the number of grids computed 
concurrently cannot be increased unlimitedly. 

4.2.  Computation time 

When the size of the spatial block is 128 × 128, the number of PEs 
is 16, and the number of grids computed concurrently is 16, Table 
3 presents the average rendering time at each time step in the 
FPGA-based sound field rendering systems and software simula-
tions in the case of the FDTD schemes with different orders. Alt-
hough the desktop machine in the software simulations runs at 
much higher clock frequency and has much larger external and 
on-chip memories than the FPGA-based sound field rendering 
systems, the FPGA-based sound field rendering systems speed up 
computation by 11 times, 13 times, and 18 times in the 2nd-order, 
4th-order, and 6th-order FDTD schemes, respectively, over soft-
ware simulations performed on the desktop machine. In the 
FPGA-based rendering system, sound pressures of grids at time 
steps n and n-1 are stored into two independent DDR4 DRAMs, 
and they are fetched through two independent channels and 
streamed into the on-chip shift registers inside FPGA. The over-
head to access data from the shift registers is usually one clock 
cycle. In contrast, all sound pressures are stored in external 
memory in the software simulations, and external memory is ac-
cessed frequently to fetch or write back data during computation. 
The data access is constraint by the memory bandwidth and the 
access overhead is very large. Although on-chip caches inside the 
processor may reduce the overhead of accessing data, their bene-
fits to the computing performance improvement are limited as the 
grid dimension is increased. Moreover, data are reused through 
temporal blocking in the FPGA-based system, and sound pres-
sures of a spatial block at 16 continuous time steps are computed 
in parallel. This further reduces data access to the external 
memory. All these lead to the performance improvement of com-
putation in the FPGA-based sound field rendering system. 

In the current performance evaluation, the Courant number is 

3 151, ,
3 2 68

 in the 2nd-order, 4th-order, 6th-order FDTD 

schemes, respectively. As the order of the FDTD scheme is in-
creased, although the clock frequency of the FPGA-based sound 
field rendering system decreased a little bit, the computing time at 
each time step is decreased significantly because the grid dimen-
sion becomes smaller and the number of grids is reduced. But it is 
worth noting that different Courant numbers will impact upon the 
valid bandwidth of the outputs in each FDTD scheme. 

4.3.  Computational Throughput  

The computational throughput stands for the number of grids up-
dated per second at each time step and is calculated by using the 
following formula.  

  

_

grid

updated

time step

N
SP

t
=  

 

(11) 

where 
gridN  is the number of grids, and 

_time stept  is the average 

computing time at a time step. Table 4 shows the computational 
throughput in the FPGA-based sound field rendering systems and 
software simulations in the case of the FDTD schemes with dif-
ferent orders. As shown in Table 4, the FPGA-based system up-
dates grids at much higher speed over the software simulations 
because it achieves much better computing performance at each 
time step. On the other hand, as the order of the FDTD scheme is 
increased from the 2nd to 6th, the computational throughput is 
improved about 9.5%. 

4.4.  Discussion  

In the current evaluation, sound propagation in a simple three-
dimensional shoebox was analyzed using the developed FPGA-
based sound field rendering system with the high-order FDTD 
method. For a sound space with complex geometries, decomposi-
tion methods to discretize a sound space into a grid mesh are re-
quired. In the hardware system, the data flow to stream data from 
the external on-board memory will be changed, and the system 
data path may become complicated. Furthermore, all boundaries 
were clamped to 0 in current evaluations. If complex boundary 
conditions are adopted, the updated equations for the grids on the 
boundaries are needed to be derived from the high-order FDTD 
method, and the computing unit inside a PE will be changed in the 
FPGA-based sound field rendering systems because the updated 
equation is different in accordance with the position of a grid.  

On the other hand, the computing pattern in sound field ren-
dering with FDTD methods is stencil computation in principle, in 
which the bottleneck of computing performance is memory band-
width. In the current design, the spatial blocking is applied to alle-
viate the required memory bandwidth, and the temporal blocking 
is adopted to reuse data and reduce memory access to external 
memory. Although FPGA provides on-chip block memories with 
large bandwidth, the size of on-chip block memories is limited, 
such as several Mega bytes. And the FPGA card DE10-Pro pro-
vides large size on-board external memory, which is 8GB DDR4-
2400 DRAMs. In the FPGA-based acceleration system, computa-
tion is sped up through customization of data path according to the 
data flow during computing and parallelism of PEs. In contrast, 
current GPUs provide several Giga bytes high speed and high 
memory bandwidth (HBM) memories, and data access overhead 
will be reduced significantly. Moreover, development of an 
FPGA-based system needs much hardware knowledge even 
though high level synthesis is widely applied in recent years. De-
velopment of a GPU-based system is relatively easier than that of 
FPGA-based system. All these results in that GPUs are more pop-
ular in computing than FPGAs. At next step, a sound field render-
ing system will be developed using GPU and compared with the 

Table 4: Computational throughput (Ggrids/s) 

orders FPGA software simulation 

2nd 8.8457  0.8015  

4th 8.3604  0.6235  

6th 9.6882  0.5207  

Table 3: Rendering time per time step (s) 

orders FPGA software simulation 

2nd 0.0486  0.5363  

4th 0.0333  0.4458  

6th 0.0238  0.4437  
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proposed FPGA-based sound field rendering system to validate 
which platform is better for sound field rendering.  

5.  CONCLUSIONS 

High-order FDTD method provides more accurate approximation 
and smaller dispersion. The sound field rendering with FDTD 
method is computationally intensive and memory intensive. In this 
research, an FPGA-based sound field rendering system based on 
the high-order FDTD method is developed to speed up computa-
tion. The spatial blocking is applied to reduce the size of the re-
quired on-chip buffer and memory bandwidth, and the temporal 
blocking is adopted to reuse data and compute sound pressures of 
grids in the same spatial block at 16 continuous time steps in par-
allel. In the sound field rendering system with the 2nd-order, 4th-
order, and 6th-order FDTD schemes, the FPGA-based system 
achieves much higher performance in computing and computa-
tional throughput over the software simulations carried out in a 
desktop machine even though the FPGA-based rendering systems 
run at much lower clock frequency and has smaller on-chip and 
external on-board memories. The evaluation results demonstrate 
that FPGAs are promising for sound field rendering. In future 
work, the decomposition methods to discretize a sound space with 
complex geometries into a grid mesh and the high-order FDTD 
schemes with complicated boundary conditions will be studied, 
and a real-time sound field rendering system based on the pro-
posed architecture and high-order FDTD methods with complicat-
ed boundary conditions will be investigated, in which input inci-
dence, computation, and computed results are all handled at real 
time. As a comparison, a counterpart system based on GPUs will 
be developed to compared with the FPGA-based sound field ren-
dering system and explore the suitable platform for sound field 
rendering. 
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