Download A Quadric Surface Model of Vacuum Tubes for Virtual Analog Applications
Despite the prevalence of modern audio technology, vacuum tube amplifiers continue to play a vital role in the music industry. For this reason, over the years, many different digital techniques have been introduced for accomplishing their emulation. In this paper, we propose a novel quadric surface model for tube simulations able to overcome the Cardarilli model in terms of efficiency whilst retaining comparable accuracy when grid current is negligible. After showing the model capability to well outline tubes starting from measurement data, we perform an efficiency comparison by implementing the considered tube models as nonlinear 3-port elements in the Wave Digital domain. We do this by taking into account the typical common-cathode gain stage employed in vacuum tube guitar amplifiers. The proposed model turns out to be characterized by a speedup of 4.6× with respect to the Cardarilli model, proving thus to be promising for real-time Virtual Analog applications.
Download Informed Source Separation for Stereo Unmixing — An Open Source Implementation
Active listening consists in interacting with the music playing and has numerous potential applications from pedagogy to gaming, through creation. In the context of music industry, using existing musical recordings (e.g. studio stems), it could be possible for the listener to generate new versions of a given musical piece (i.e. artistic mix). But imagine one could do this from the original mix itself. In a previous research project, we proposed a coder / decoder scheme for what we called informed source separation: The coder determines the information necessary to recover the tracks and embeds it inaudibly (using watermarking) in the mix. The decoder enhances the source separation with this information. We proposed and patented several methods, using various types of embedded information and separation techniques, hoping that the music industry was ready to give the listener this freedom of active listening. Fortunately, there are numerous other applications possible, such as the manipulation of musical archives, for example in the context of ethnomusicology. But the patents remain for many years, which is problematic. In this article, we present an open-source implementation of a patent-free algorithm to address the mixing and unmixing audio problem for any type of music.
Download Differentiable Feedback Delay Network for Colorless Reverberation
Artificial reverberation algorithms often suffer from spectral coloration, usually in the form of metallic ringing, which impairs the perceived quality of sound. This paper proposes a method to reduce the coloration in the feedback delay network (FDN), a popular artificial reverberation algorithm. An optimization framework is employed entailing a differentiable FDN to learn a set of parameters decreasing coloration. The optimization objective is to minimize the spectral loss to obtain a flat magnitude response, with an additional temporal loss term to control the sparseness of the impulse response. The objective evaluation of the method shows a favorable narrower distribution of modal excitation while retaining the impulse response density. The subjective evaluation demonstrates that the proposed method lowers perceptual coloration of late reverberation, and also shows that the suggested optimization improves sound quality for small FDN sizes. The method proposed in this work constitutes an improvement in the design of accurate and high-quality artificial reverberation, simultaneously offering computational savings.
Download Design of FPGA-based High-order FDTD Method for Room Acoustics
Sound field rendering with finite difference time domain (FDTD) method is computation-intensive and memory-intensive. This research investigates an FPGA-based acceleration system for sound field rendering with the high-order FDTD method, in which spatial and temporal blockings are applied to alleviate external memory bandwidth bottleneck and reuse data, respectively. After implemented by using the FPGA card DE10-Pro, the FPGA-based sound field rendering systems outperform the software simulations conducted on a desktop machine with 512 GB DRAMs and a Xeon Gold 6212U processor (24 cores) running at 2.4 GHz by 11 times, 13 times, and 18 times in computing performance in the case of the 2nd-order, 4th-order, and 6th-order FDTD schemes, respectively, even though the FPGA-based sound field rendering systems run at much lower clock frequency and have much smaller on-chip and external memory.
Download An active learning procedure for the interaural time difference discrimination threshold
Measuring the auditory lateralization elicited by interaural time difference (ITD) cues involves the estimation of a psychometric function (PF). The shape of this function usually follows from the analysis of the subjective data and models the probability of correctly localizing the angular position of a sound source. The present study describes and evaluates a procedure for progressively fitting a PF, using Gaussian process classification of the subjective responses produced during a binary decision experiment. The process refines adaptively an approximated PF, following Bayesian inference. At each trial, it suggests the most informative auditory stimulus for function refinement according to Bayesian active learning by disagreement (BALD) mutual information. In this paper, the procedure was modified to accommodate two-alternative forced choice (2AFC) experimental methods and then was compared with a standard adaptive “three-down, one-up” staircase procedure. Our process approximates the average threshold ITD 79.4% correct level of lateralization with a mean accuracy increase of 8.9% over the Weibull function fitted on the data of the same test. The final accuracy for the Just Noticeable Difference (JND) in ITD is achieved with only 37.6% of the trials needed by a standard lateralization test.