Download Neural Grey-Box Guitar Amplifier Modelling with Limited Data This paper combines recurrent neural networks (RNNs) with the discretised Kirchhoff nodal analysis (DK-method) to create a grey-box guitar amplifier model. Both the objective and subjective results suggest that the proposed model is able to outperform a baseline black-box RNN model in the task of modelling a guitar amplifier, including realistically recreating the behaviour of the amplifier equaliser circuit, whilst requiring significantly less training data. Furthermore, we adapt the linear part of the DK-method in a deep learning scenario to derive multiple state-space filters simultaneously. We frequency sample the filter transfer functions in parallel and perform frequency domain filtering to considerably reduce the required training times compared to recursive state-space filtering. This study shows that it is a powerful idea to separately model the linear and nonlinear parts of a guitar amplifier using supervised learning.
Download Guitar Tone Stack Modeling with a Neural State-Space Filter In this work, we present a data-driven approach to modeling tone stack circuits in guitar amplifiers and distortion pedals. To this aim, the proposed modeling approach uses a feedforward fully connected neural network to predict the parameters of a coupledform state-space filter, ensuring the numerical stability of the resulting time-varying system. The neural network is conditioned on the tone controls of the target tone stack and is optimized jointly with the coupled-form state-space filter to match the target frequency response. To assess the proposed approach, we model three popular tone stack schematics with both matched-order and overparameterized filters and conduct an objective comparison with well-established approaches that use cascaded biquad filters. Results from the conducted experiments demonstrate improved accuracy of the proposed modeling approach, especially in the case of over-parameterized state-space filters while guaranteeing numerical stability. Our method can be deployed, after training, in realtime audio processors.
Download Virtual Analog Modeling of Distortion Circuits Using Neural Ordinary Differential Equations Recent research in deep learning has shown that neural networks can learn differential equations governing dynamical systems. In this paper, we adapt this concept to Virtual Analog (VA) modeling to learn the ordinary differential equations (ODEs) governing the first-order and the second-order diode clipper. The proposed models achieve performance comparable to state-of-the-art recurrent neural networks (RNNs) albeit using fewer parameters. We show that this approach does not require oversampling and allows to increase the sampling rate after the training has completed, which results in increased accuracy. Using a sophisticated numerical solver allows to increase the accuracy at the cost of slower processing. ODEs learned this way do not require closed forms but are still physically interpretable.
Download Grey-Box Modelling of Dynamic Range Compression This paper explores the digital emulation of analog dynamic range compressors, proposing a grey-box model that uses a combination of traditional signal processing techniques and machine learning. The main idea is to use the structure of a traditional digital compressor in a machine learning framework, so it can be trained end-to-end to create a virtual analog model of a compressor from data. The complexity of the model can be adjusted, allowing a trade-off between the model accuracy and computational cost. The proposed model has interpretable components, so its behaviour can be controlled more readily after training in comparison to a black-box model. The result is a model that achieves similar accuracy to a black-box baseline, whilst requiring less than 10% of the number of operations per sample at runtime.
Download Neural Modelling of Time-Varying Effects This paper proposes a grey-box neural network based approach
to modelling LFO modulated time-varying effects.
The neural
network model receives both the unprocessed audio, as well as
the LFO signal, as input. This allows complete control over the
model’s LFO frequency and shape. The neural networks are trained
using guitar audio, which has to be processed by the target effect
and also annotated with the predicted LFO signal before training.
A measurement signal based on regularly spaced chirps was used
to accurately predict the LFO signal. The model architecture has
been previously shown to be capable of running in real-time on a
modern desktop computer, whilst using relatively little processing
power. We validate our approach creating models of both a phaser
and a flanger effects pedal, and theoretically it can be applied to
any LFO modulated time-varying effect. In the best case, an errorto-signal ratio of 1.3% is achieved when modelling a flanger pedal,
and previous work has shown that this corresponds to the model
being nearly indistinguishable from the target device.
Download Exposure Bias and State Matching in Recurrent Neural Network Virtual Analog Models Virtual analog (VA) modeling using neural networks (NNs) has
great potential for rapidly producing high-fidelity models. Recurrent neural networks (RNNs) are especially appealing for VA due
to their connection with discrete nodal analysis. Furthermore, VA
models based on NNs can be trained efficiently by directly exposing them to the circuit states in a gray-box fashion. However,
exposure to ground truth information during training can leave the
models susceptible to error accumulation in a free-running mode,
also known as “exposure bias” in machine learning literature. This
paper presents a unified framework for treating the previously
proposed state trajectory network (STN) and gated recurrent unit
(GRU) networks as special cases of discrete nodal analysis. We
propose a novel circuit state-matching mechanism for the GRU
and experimentally compare the previously mentioned networks
for their performance in state matching, during training, and in exposure bias, during inference. Experimental results from modeling
a diode clipper show that all the tested models exhibit some exposure bias, which can be mitigated by truncated backpropagation
through time. Furthermore, the proposed state matching mechanism improves the GRU modeling performance of an overdrive
pedal and a phaser pedal, especially in the presence of external
modulation, apparent in a phaser circuit.
Download RIR2FDN: An Improved Room Impulse Response Analysis and Synthesis This paper seeks to improve the state-of-the-art in delay-networkbased analysis-synthesis of measured room impulse responses (RIRs). We propose an informed method incorporating improved energy decay estimation and synthesis with an optimized feedback delay network. The performance of the presented method is compared against an end-to-end deep-learning approach. A formal listening test was conducted where participants assessed the similarity of reverberated material across seven distinct RIRs and three different sound sources. The results reveal that the performance of these methods is influenced by both the excitation sounds and the reverberation conditions. Nonetheless, the proposed method consistently demonstrates higher similarity ratings compared to the end-to-end approach across most conditions. However, achieving an indistinguishable synthesis of measured RIRs remains a persistent challenge, underscoring the complexity of this problem. Overall, this work helps improve the sound quality of analysis-based artificial reverberation.
Download Neural Modeling of Magnetic Tape Recorders The sound of magnetic recording media, such as open-reel and cassette tape recorders, is still sought after by today’s sound practitioners due to the imperfections embedded in the physics of the magnetic recording process. This paper proposes a method for digitally emulating this character using neural networks. The signal chain of the proposed system consists of three main components: the hysteretic nonlinearity and filtering jointly produced by the magnetic recording process as well as the record and playback amplifiers, the fluctuating delay originating from the tape transport, and the combined additive noise component from various electromagnetic origins. In our approach, the hysteretic nonlinear block is modeled using a recurrent neural network, while the delay trajectories and the noise component are generated using separate diffusion models, which employ U-net deep convolutional neural networks. According to the conducted objective evaluation, the proposed architecture faithfully captures the character of the magnetic tape recorder. The results of this study can be used to construct virtual replicas of vintage sound recording devices with applications in music production and audio antiquing tasks.
Download Unsupervised Estimation of Nonlinear Audio Effects: Comparing Diffusion-Based and Adversarial Approaches Accurately estimating nonlinear audio effects without access to
paired input-output signals remains a challenging problem. This
work studies unsupervised probabilistic approaches for solving this
task. We introduce a method, novel for this application, based
on diffusion generative models for blind system identification, enabling the estimation of unknown nonlinear effects using blackand gray-box models. This study compares this method with a
previously proposed adversarial approach, analyzing the performance of both methods under different parameterizations of the
effect operator and varying lengths of available effected recordings. Through experiments on guitar distortion effects, we show
that the diffusion-based approach provides more stable results and
is less sensitive to data availability, while the adversarial approach
is superior at estimating more pronounced distortion effects. Our
findings contribute to the robust unsupervised blind estimation of
audio effects, demonstrating the potential of diffusion models for
system identification in music technology.
Download Real-Time Black-Box Modelling With Recurrent Neural Networks This paper proposes to use a recurrent neural network for black-box modelling of nonlinear audio systems, such as tube amplifiers and distortion pedals. As a recurrent unit structure, we test both Long Short-Term Memory and a Gated Recurrent Unit. We compare the proposed neural network with a WaveNet-style deep neural network, which has been suggested previously for tube amplifier modelling. The neural networks are trained with several minutes of guitar and bass recordings, which have been passed through the devices to be modelled. A real-time audio plugin implementing the proposed networks has been developed in the JUCE framework. It is shown that the recurrent neural networks achieve similar accuracy to the WaveNet model, while requiring significantly less processing power to run. The Long Short-Term Memory recurrent unit is also found to outperform the Gated Recurrent Unit overall. The proposed neural network is an important step forward in computationally efficient yet accurate emulation of tube amplifiers and distortion pedals.