Download Toward the Perfect Audio Morph? Singing Voice Synthesis and Processing This paper reviews the popular methods and models used for the synthesis of the singing voice, discussing strengths and weaknesses of each technique. Then a brief review is given of research on cross-modal visual/auditory perception of the human voice. The paper concludes with comments related to the singing synthesis systems discussed, addressing multi-modal perception, audio morphing, and the categorical perception of sound.
Download Identification and Modeling of a Flute Source Signal This paper addresses the modeling of the source signal of a flute sound obtained by «removing» the contribution of the resonator. The resulting sound has then a more regular spectral behavior and can be modeled using signal models. The decomposition of the source signal into a deterministic and a stochastic part has been made using adaptive filtering. The deterministic part can then be modeled by non-linear synthesis models, the parameters of which are obtained using perceptive criteria. Linear filtering are used to model the stochastic part of the source signal.
Download A Robust and Multi‐Scale Modal Analysis This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method for modal analysis that preserves sound variety across the surface of an object, at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which easily permits the construction of plausible lower resolution approximations of the modal model. With our approach, we can compute the audible impulse response of a variety of objects. Our solution is robust and can handle non-manifold geometries that include both volumetric and surface parts, such as those used in games, training simulations, and other interactive virtual environment.
Download Acoustic rendering of particle‐based simulation of liquids in motion This paper presents an approach to the synthesis of acoustic emission due to liquids in motion. First, the models for the liquid motion description, based on a particle-based fluid dynamics representation, and for the acoustic emission are described, along with the criteria for the control of the audio algorithms through the parameters of the particles system. Then, the experimental results are discussed for a configuration representing the falling of a liquid volume into an underlying rigid container.
Download Spatio-Operational Spectral (S.O.S.) Synthesis We propose an approach to digital audio effects using recombinant spatialization for signal processing. This technique, which we call Spatio-Operational Spectral Synthesis (SOS), relies on recent theories of auditory perception. The perceptual spatial phenomenon of objecthood is explored as an expressive musical tool.
Download A 3D Multi-Plate Environment for Sound Synthesis In this paper, a physics-based sound synthesis environment is presented which is composed of several plates, under nonlinear conditions, coupled with the surrounding acoustic field. Equations governing the behaviour of the system are implemented numerically using finite difference time domain methods. The number of plates, their position relative to a 3D computational enclosure and their physical properties can all be specified by the user; simple control parameters allow the musician/composer to play the virtual instrument. Spatialised sound outputs may be sampled from the simulated acoustic field using several channels simultaneously. Implementation details and control strategies for this instrument will be discussed; simulations results and sound examples will be presented.
Download Simulating the Friction Sounds Using a Friction-based Adhesion Theory Model Synthesizing a friction sound of deformable objects by a computer is challenging. We propose a novel physics-based approach to synthesize friction sounds based on dynamics simulation. In this work, we calculate the elastic deformation of an object surface when the object comes in contact with other objects. The principle of our method is to divide an object surface into microrectangles. The deformation of each microrectangle is set using two assumptions: the size of a microrectangle (1) changes by contacting other object and (2) obeys a normal distribution. We consider the sound pressure distribution and its space spread, consisting of vibrations of all microrectangles, to synthesize a friction sound at an observation point. We express the global motions of an object by position based dynamics where we add an adhesion constraint. Our proposed method enables the generation of friction sounds of objects in different materials by regulating the initial value of microrectangular parameters.
Download Digital Simulation of “Brassiness” and Amplitude-Dependent Propagation Speed in Wind Instruments The speed of sound in air increases with pressure, causing pressure peaks to travel faster than troughs, and leading to a sharpening of the propagating pressure waveform. Here, this nonlinear effect is explored, and its application to brass instrument synthesis and its use as an audio effect are described. Acoustic measurements on tubes and brass instruments are presented showing significant spectral enrichment, sometimes referred to as “brassiness.” The effect may be implemented as an amplitudedependent delay, distributed across a cascade of incremental delays. A bidirectional waveguide, having a pressure-dependent delay, appropriate for musical instrument synthesis, is presented. A computationally efficient lumped-element processor is also presented. Example brass instrument recordings, originally played softly, are spectrally enriched or “brassified” to simulate a fortissimo playing level.
Download Prepared Piano Sound Synthesis A sound synthesis algorithm which simulates and extends the behaviour of the acoustic prepared piano is presented. The algorithm is based on a finite difference approximation to multiple stiff string vibration, including an excitation method (a hammer) as well as several connected preparation elements, modeled as lumped nonlinearities. Numerical issues and implementation details are discussed, and sound examples are presented.
Download Generation of Non-repetitive Everyday Impact Sounds for Interactive Applications The use of high quality sound effects is growing rapidly in multimedia, interactive and virtual reality applications. The common source of audio events in these applications is impact sounds. The sound effects in such environments can be pre-recorded or synthesized in real-time as a result of a physical event. However, one of the biggest problems when using pre-recorded sound effects is the monotonous repetition of these sounds which can be tedious to the listener. In this paper, we present a new algorithm which generates non-repetitive impact sound effects using parameters from the physical interaction. Our approach aims to use audio grains to create finely-controlled synthesized sounds which are based on recordings of impact sounds. The proposed algorithm can also be used in a large set of audio data analysis, representation, and compression applications. A subjective test was carried out to evaluate the perceptual quality of the synthesized sounds.