Download Virtual Auditory Myography of Timpani-playing Avatars Music performance is highly related to instrumentalists’ movements and one of the biggest challenges is the identification and understanding of gesture strategies according to the plethora of musical nuances (dynamics, tempo, etc..) available to performers. During these past few years, a novel approach has been elaborated, consisting in studying movement strategies through auditory rendering. In this paper, we focus on the auditory analysis of timpani (percussion) gestures. We present a novel interface combining movement simulation and sonification as a means of enhancing the auditory analysis of timpani gestures. We further report the results from an evaluation of this interface, where we study the contributions of sonification to the multimodal display.
Download Energy Based Synthesis of Tension Modulation in Membranes Above a certain amplitude, membrane vibration becomes nonlinear due to the variation of surface tension. This leads to audible pitch glides, which greatly contribute to the characteristic timbre of tom-tom drums of the classical drum set and many other percussion instruments. Therefore, there is a strong motivation to take the tension modulation effect into account in drum synthesis. Some models do already exist that model this phenomenon, however, their computational complexity is significantly higher compared to linear membrane models. This paper applies an efficient methodology previously developed for the string to model the quasistatic part (short-time average) of the surface tension. The efficient modeling is based on the linear relationship between the quasistatic tension and membrane energy, since the energy can be computed at a relatively low computational cost. When this energy-based tension modulation is added to linear membrane models, the perceptually most relevant pitch glides are accurately synthesized, while the increase in computational complexity is negligible.
Download Mechanical Sound Synthesis: And the New Application of Force-Feedback Teleoperation of Acoustic Musical Instruments In Mechanical Sound Synthesis, real mechanical devices are employed to create sound. Users can interact directly with the variables of the sound synthesis, making interactions more intuitive to both users and audience. We focus on real-time feedback control for Mechanical Sound Synthesis and provide a classification scheme using the reality-virtuality continuum. We discover an apparently novel paradigm, which is described as augmented virtuality for real-time feedback control. Exploring this paradigm, we present preliminary results from a system enabling a user to teleoperate acoustic percussion instruments with the aid of force feedback. Mechanical looping of the teleoperation trajectories and their transformations enables the synthesis of lifelike sounds with superhuman characteristics that are nevertheless produced by mechanical devices.
Download Automatic Segmentation of the Temporal Evolution of Isolated Acoustic Musical Instruments Sounds Using Spectro-Temporal Cues The automatic segmentation of isolated musical instrument sounds according to the temporal evolution is not a trivial task. It requires a model capable of capturing regions such as the attack, decay, sustain and release accurately for many types of instruments with different modes of excitation. The traditional ADSR amplitude envelope model does not apply universally to acoustic musical instrument sounds with different excitation methods because it uses strictly amplitude information and supposes all sounds manifest the same temporal evolution. We present an automatic segmentation technique based on a more realistic model of the temporal evolution of many types of acoustic musical instruments that incorporates both temporal and spectrotemporal cues. The method allows a robust and more perceptually relevant automatic segmentation of the isolated sounds of many musical instruments that fit the model.
Download Adjusting the Spectral Envelope Evolution of Transposed Sounds with Gabor Mask Prototypes Audio-samplers often require to modify the pitch of recorded sounds in order to generate scales or chords. This article tackles the use of Gabor masks and their capacity to improve the perceptual realism of transposed notes obtained through the classical phasevocoder algorithm. Gabor masks can be seen as operators that allows the modification of time-dependent spectral content of sounds by modifying their time-frequency representation. The goal here is to restore a distribution of energy that is more in line with the physics of the structure that generated the original sound. The Gabor mask is elaborated using an estimation of the spectral envelope evolution in the time-frequency plane, and then applied to the modified Gabor transform. This operation turns the modified Gabor transform into another one which respects the estimated spectral envelope evolution, and therefore leads to a note that is more perceptually convincing.
Download Simulating Idiomatic Playing Styles in a Classical Guitar Synthesizer: Rasgueado as a Case Study This paper presents our research efforts to synthesize complex instrumental gestures using a score-based control scheme. Our specific goal is to simulate the rasgueado technique that is popular especially in flamenco music. This technique is also used in the classical guitar repertoire. Rasgueado is especially challenging as ordinary music notation is not adequate to represent the dense stream of notes required for a convincing simulation. We will take two approaches to realize our task. First, we use the practical knowledge of how the actual performance is accomplished by the human player. A second, complementary, approach is to analyze an excerpt from real guitar playing. Our main focus here is to extract the onset times and the amplitudes of the recoded gesture. Next we combine the results from the two analysis steps using a constraintbased approach to find possible pitch and fingering sequences. Finally we translate the findings to our macro-note scheme that allows us to fill algorithmically a musical score.
Download Modeling Methods for the Highly Dispersive Slinky Spring: A Novel Musical Toy The ’Slinky’ spring is a popular and beloved toy for many children. Like its smaller relatives, used in spring reverberation units, it can produce interesting sonic behaviors. We explore the behavior of the ’Slinky’ spring via measurement, and discover that its sonic characteristics are notably different to those of smaller springs. We discuss methods of modeling the behavior of a Slinky via the use of finite-difference techniques and digital waveguides. We then apply these models in different structures to build a number of interesting tools for computer-based music production.
Download Analysis / Synthesis of Rolling Sounds Using a Source Filter Approach In this paper, the analysis and synthesis of a rolling ball sound is proposed. The approach is based on the assumption that the rolling sound is generated by a concatenation of micro-impacts between a ball and a surface, each having associated resonances. Contact timing information is first extracted from the rolling sound using an onset detection process. The resulting individual contact segments are subband filtered before being analyzed using linear predictive coding (LPC) and notch filter parameter estimation. The segments are then resynthesized and overlap-added to form a complete rolling sound. This approach is similar to that of [1], though the methods used for contact event detection and filter parameter estimation are completely different.
Download More Modal Fun - “Forced Vibration” at One Point The question, if a vibrating object can be forced to follow a given movement profile at one point forms a case of an inverse problem. It is shown that for the specific setting of an object described by modal data, this question may be solved by a newly developed method. The new technique has several strengths, such as allowing to compute modal data for the constrained scenario and forming a basis for precise and stable simulations. The latter potential is shown at a short example, a stiff string being hammered against a fixed board by a hammer of infinite mass.