Download Analysis and Simulation of an Analog Guitar Compressor The digital modeling of guitar effect units requires a high physical similarity between the model and the analog reference. The famous MXR DynaComp is used to sustain the guitar sound. In this work its complex circuit is analyzed and simulated by using state-space representations. The equations for the calculation of important parameters within the circuit are derived in detail and a mathematical description of the operational transconductance amplifier is given. In addition the digital model is compared to the original unit.
Download Real-time Gong Synthesis Physical modeling sound synthesis is notoriously computationally intensive. But recent advances in algorithm efficiency, accompanied by increases in available computing power have brought real-time performance within range for a variety of complex physical models. In this paper, the case of nonlinear plate vibration, used as a simple model for the synthesis of sounds from gongs is considered. Such a model, derived from that of Föppl and von Kármán, includes a strong geometric nonlinearity, leading to a variety of perceptually-salient effects, including pitch glides and crashes. Also discussed here are input excitation and scanned multichannel output. A numerical scheme is presented that mirrors the energetic and dissipative properties of a continuous model, allowing for control over numerical stability. Furthermore, the nonlinearity in the scheme can be solved explicitly, allowing for an efficient solution in real time. The solution relies on a quadratised expression for numerical energy, and is in line with recent work on invariant energy quadratisation and scalar auxiliary variable approaches to simulation. Implementation details, including appropriate perceptuallyrelevant choices for parameter settings are discussed. Numerical examples are presented, alongside timing results illustrating realtime performance on a typical CPU.
Download Non-Linear Identification of an Electric Guitar Pickup Physical models of electric guitars are still not very widespread in the scientific literature. Especially, the description of the non linear behavior of pickups still requires some refinements. This paper deals with the identification of pickup non linearities based on a Hammerstein representation, by means of a specific experimental set-up to drive the pickup in a controlled way. A comparison with experimental results shows that the model succeeds in describing the pickup when used in realistic conditions.
Download A Modular Percussion Synthesis Environment The construction of new virtual instruments is one long-term goal of physical modeling synthesis; a common strategy across various different physical modeling methodologies, including lumped network models, modal synthesis and scattering based methods, is to provide a canonical set of basic elements, and allow the user to build an instrument via certain specified connection rules. Such an environment may be described as modular. Percussion instruments form a good test-bed for the development of modular synthesis techniques—the basic components are bars and plates, and may be accompanied by connection elements, with a nonlinear character. Modular synthesis has been approached using all of the techniques mentioned above, but time domain finite difference schemes are an alternative, allowing many problems inherent in the above methods, including computability, large memory and precomputation requirements, and lack of extensibility to more complex systems, to be circumvented. One such network model is presented here along with the associated difference schemes, followed by a discussion of implementation details, the issues of excitation and output, and a description of various instrument configurations. The article concludes with a presentation of simulation results, generated in the Matlab prototyping language.
Download Validated Exponential Analysis for Harmonic Sounds In audio spectral analysis, the Fourier method is popular because of its stability and its low computational complexity. It suffers however from a time-frequency resolution trade off and is not particularly suited for aperiodic signals such as exponentially decaying ones. To overcome their resolution limitation, additional techniques such as quadratic peak interpolation or peak picking, and instantaneous frequency computation from phase unwrapping are used. Parameteric methods on the other hand, overcome the timefrequency trade off but are more susceptible to noise and have a higher computational complexity. We propose a method to overcome these drawbacks: we set up regularized smaller sized independent problems and perform a cluster analysis on their combined output. The new approach validates the true physical terms in the exponential model, is robust in the presence of outliers in the data and is able to filter out any non-physical noise terms in the model. The method is illustrated in the removal of electrical humming in harmonic sounds.
Download An Explorative String-bridge-plate Model with Tunable Parameters The virtual exploration of the domain of mechano-acoustically produced sound and music is a long-held aspiration of physical modelling. A physics-based algorithm developed for this purpose combined with an interface can be referred to as a virtual-acoustic instrument; its design, formulation, implementation, and control are subject to a mix of technical and aesthetic criteria, including sonic complexity, versatility, modal accuracy, and computational efficiency. This paper reports on the development of one such system, based on simulating the vibrations of a string and a plate coupled via a (nonlinear) bridge element. Attention is given to formulating and implementing the numerical algorithm such that any of its parameters can be adjusted in real-time, thus facilitating musician-friendly exploration of the parameter space and offering novel possibilities regarding gestural control. Simulation results are presented exemplifying the sonic potential of the string-bridgeplate model (including bridge rattling and buzzing), and details regarding efficiency, real-time implementation and control interface development are discussed.
Download Spatial Sound Synthesis for Circular Membranes Physical models of real or virtual instruments are usually only exploited for the generation of wave forms. However, models of twoand three-dimensional vibrating structures contain also information about the sound radiation into the free field. This contribution presents a model for a membrane from which the required driving functions for a multichannel loudspeaker array are derived. The resulting sound field reproduces not only the musical timbre of the sounding body but also its spatial radiation characteristics. It is suitable for real-time synthesis without pre-recorded or presynthesized source tracks.
Download Sound Synthesis for Nonlinear Plates In this paper, a simple finite difference scheme for a rectangular dynamic nonlinear plate, under free boundary conditions is presented. The algorithm is straightforward to program, and is capable of reproducing, to a first approximation, the behaviour of various percussion instruments whose timbre depends crucially on nonlinear effects (due to high-speed strikes), including transient pitch glides and the buildup of high-frequency energy. Though computationally intensive, algorithms such as that presented here promise more faithful sound synthesis and, as with all physical model inspired synthesis algorithms, require the specification of only a few, physically meaningful parameters. Full details of the algorithm, including the setting of boundary conditions and computational demands are provided. Numerical simulation results are presented.
Download A Real-Time Synthesis Oriented Tanpura Model Physics-based synthesis of tanpura drones requires accurate simulation of stiff, lossy string vibrations while incorporating sustained contact with the bridge and a cotton thread. Several challenges arise from this when seeking efficient and stable algorithms for real-time sound synthesis. The approach proposed here to address these combines modal expansion of the string dynamics with strategic simplifications regarding the string-bridge and stringthread contact, resulting in an efficient and provably stable timestepping scheme with exact modal parameters. Attention is given also to the physical characterisation of the system, including string damping behaviour, body radiation characteristics, and determination of appropriate contact parameters. Simulation results are presented exemplifying the key features of the model.
Download Modeling Bowl Resonators Using Circular Waveguide Networks We propose efficient implementations of a glass harmonica and a Tibetan bowl using circular digital waveguide networks. Circular networks provide a physically meaningful representation of bowl resonators. Just like the real instruments, both models can be either struck or rubbed using a hard mallet, a violin bow, or a wet finger.