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ABSTRACT
Physical modeling sound synthesis is notoriously computa-

tionally intensive. But recent advances in algorithm efficiency, ac-
companied by increases in available computing power have brought
real-time performance within range for a variety of complex phys-
ical models. In this paper, the case of nonlinear plate vibration,
used as a simple model for the synthesis of sounds from gongs is
considered. Such a model, derived from that of Föppl and von Kár-
mán, includes a strong geometric nonlinearity, leading to a variety
of perceptually-salient effects, including pitch glides and crashes.
Also discussed here are input excitation and scanned multichannel
output. A numerical scheme is presented that mirrors the energetic
and dissipative properties of a continuous model, allowing for con-
trol over numerical stability. Furthermore, the nonlinearity in the
scheme can be solved explicitly, allowing for an efficient solution
in real time. The solution relies on a quadratised expression for nu-
merical energy, and is in line with recent work on invariant energy
quadratisation and scalar auxiliary variable approaches to simula-
tion. Implementation details, including appropriate perceptually-
relevant choices for parameter settings are discussed. Numerical
examples are presented, alongside timing results illustrating real-
time performance on a typical CPU.

1. INTRODUCTION

Physical modeling synthesis has now reached a certain level of ma-
turity. It has become possible to perform audio rate simulations of
relatively complex systems in real time. One reason for this fol-
lows from the steady increase in available computing power, ac-
companied by newer tools allowing code acceleration using low-
level parallelisation on the CPU [1]. More important, though, have
been advances in algorithm efficiency, particularly for systems ex-
hibiting a strong nonlinearity, the subject of this paper.

Perhaps the strongest nonlinear mechanism in any acoustic
musical instrument is found in gong-like percussion instruments

∗ Michele Ducceschi has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme, Grant agreement No. 950084 - NEMUS.
Copyright: © 2023 Stefan Bilbao et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

leading to characteristic pitch glides, crashes and swells. A lin-
ear model is grossly insufficient to capture such effects, and the
nonlinearity is distributed throughout the entire vibrating structure,
normally modelled as a thin plate or shell. Physical models have
been available for some time [2, 3], and used for sound synthesis
purposes [4], but have been limited to offline use. Computational
cost is large, due to the essentially 2D nature of such models, and
increased further due to the complexity of the geometric nonlin-
earity, alongside various practical algorithm design constraints.

The most important of these constraints is the requirement
for numerically stable behaviour. Though simple efficient explicit
time domain simulation methods, such as Störmer-Verlet integra-
tion are available [5], stability is not ensured, and indeed such
methods are highly prone to explosive instability, particularly at
high amplitudes, exactly at the onset of perceptually salient non-
linear effects. One approach to ensuring numerical stability is
through the use of energy-conserving numerical designs, where
the solution size is bounded by a numerical invariant (the energy
or pseudo-energy). In the present case of nonlinear plate vibra-
tion, such methods have been proposed, and allow for designs
of so-called linearly implicit character—costly iterative methods
such as Newton Raphson are avoided, but potentially large linear
systems must be both constructed and solved in the run-time loop
[6]—real-time performance is ruled out for such methods. A more
recent approach follows from invariant energy quadratisation [7, 8]
and scalar auxiliary variable [9, 10] methods applied in geometric
numerical integration. In general, these also lead to algorithms
with the same linearly-implicit character. However, recent results
have allowed for fully explicit numerical solutions through the ex-
ploitation of structure in the linear system to be solved, increasing
the speed of calculation by an order of magnitude at least [11, 12],
while maintaining stable numerical behaviour. This paper is con-
cerned with the range of algorithmic and programming techniques
necessary in order to generate gong-like sounds in real time.

A model of nonlinear plate vibration at high amplitudes, based
on the dynamic analogue of the model of Föppl and von Kármán,
and including effects of loss as well as input excitation and scanned
multichannel output, is presented in Section 2. An energy balance
is also presented. The basic steps leading to a discrete-time simula-
tion algorithm are presented in Section 3, beginning from the defi-
nition of a basic spatial grid and difference operators, and proceed-
ing to a semi-discrete form. This form may then be written directly
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as an extension of a Hamiltonian system. A fully discrete time
numerically stable algorithm accompanied by an energy balance
may be constructed, and has the advantage that the nonlinearity is
dealt with fully explicitly. Approaches to the numerical solution
of the remaining required linear system, involving the biharmonic
operator are also outlined. Implementation details, including the
simplification of user-supplied instrument design and control pa-
rameters, are described in Section 4. Numerical results, including
timings illustrating real time performance on a standard CPU, as
well as spectrograms of representative outputs are provided in Sec-
tion 5. Concluding remarks appear in Section 6. Sound examples
are available at the companion page 1.

2. MODEL

Realistic sound synthesis from a gong-like instrument requires a
nonlinear model of plate vibration—necessary in order to capture
strong amplitude-dependent effects such as pitch glides, crashes
and swells. Linear models (such as, e.g. the thin model due to
Kirchhoff [13] or even thick models of Mindlin-Reissner form
[14]) are insufficient for this purpose. Simplified nonlinear models
such as that of Berger [15] are able to replicate pitch glides, but not
the energy cascade to high frequencies characteristic of crashes.

The simplest suitable model is the dynamic analogue of the
system of Föppl and von Kármán [16, 17, 18], and describes the
high amplitude vibration of thin plates. When accompanied by ad-
ditional terms emulating loss, and a forcing term, it may be written
as the following coupled system of partial differential equations:

ρξ∂2
tw = −Q∆∆w − 2ρξσ0∂tw + 2ρξσ1∂t∆w

+L(w,Φ) + δ(r− ri)f (1a)
2

Eξ
∆∆Φ = −L(w,w) . (1b)

Here, w(r, t) and Φ(r, t) are the transverse plate deflection and
Airy stress function, respectively. Both are functions of time t ≥
0, and spatial coordinates r = (x, y) ∈ D ⊂ R2. In this paper,
the rectangular domain D = [−Lx/2, Lx/2] × [−Ly/2, Ly/2]
will be considered, for plate side lengths Lx, Ly in m. See Fig-
ure 1. The other material and geometric parameters that define the
plate are the density ρ, in kg m−3, the plate thickness ξ, in m, and
Young’s modulus E in Pa—the flexural rigidity Q is defined as
Q = Eξ3/12(1−ν2), where ν is Poisson’s ratio for the plate ma-
terial. The two parameters σ0, in s−1 and σ1, in m2s−1 give two-
parameter control over frequency-dependent loss [19]—see also
Section 4.1. ∂t represents partial differentiation with respect to
time t, and ∆ the two-dimensional Laplacian, where ∆ = ∂2

x+∂
2
y ,

for spatial partial derivatives ∂x and ∂y with respect to coordinates
x and y respectively. ∆∆ is the biharmonic operator.

The nonlinear operator L, defined, in terms of its operation on
two functions α(x, y) and β(x, y), as:

L(α, β) = ∂2
xα∂

2
yβ + ∂2

yα∂
2
xβ − 2∂x∂yα∂x∂yβ . (2)

For simplicity, boundary conditions are chosen to be of simply
supported type over the boundary ∂D of D, so that

w = ∆w = 0 Φ = ∆Φ = 0 for r ∈ ∂D . (3)

Initial conditions are assumed to be zero, so that

w(r, 0) = ∂tw|r,t=0 = 0 . (4)

1https://physicalaudio.co.uk/modelling-gongs/

Figure 1: Plate geometry, with side lengths Lx and Ly . The driv-
ing location ri is indicated, as well as the two output locations
r
(1)
o (t) and r

(2)
o (t), drawn from an elliptical trajectory.

Initial conditions for Φ do not need to be set independently.
Versions of system (1) have been used in various studies of

percussion instruments, and in particular, the cases of circular plates
[2] and the generalisation to the case of curved plates or shells [3].
Shells of variable thickness have also been examined in the con-
text of cymbal acoustics [20]. Here, a simplified flat rectangular
geometry is chosen, as it reproduces many of the features that are
characteristic of gong-like instruments, and also leads to simula-
tion algorithm designs that are very well suited for acceleration.

2.1. Input and Output

Also included in system (1) is a point-like excitation term. f(t), in
N, is a forcing function applied at location ri = (xi, yi); δ is a 2-
dimensional Dirac delta function. A full model of the interaction
between a striking object (such as a mallet) and the plate could
be included here, as in earlier models of percussion instruments
[21]. Because the interaction time is generally extremely short (on
the order of 1-5 ms), a much simpler approach is to model this
interaction using an externally supplied excitation function of the
form of a short pulse. A suitable candidate is a time-limited raised
sinusoidal distribution [19] of the form

f(t) =

{
fmax sin

2
(

π(t−t0)
T

)
, t0 ≤ t ≤ t0 + T

0, otherwise
. (5)

See Figure 2. Other excitation functions can be applied—including
steady sinusoidal functions, and possibly even audio, in which case
the physical model behaves as an effect instead of a synthesizer.

Figure 2: Excitation function f(t), as defined in (5).

For output, the picture is slightly different. Output audio sig-
nals w(p)

o (t) can be drawn from the plate at P distinct locations
r
(p)
o , p = 1, . . . , P , and defined in terms of plate displacement, as

w(p)
o (t) = w(r(p)o , t) . (6)
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It can be useful, as an additional effect, to allow the output loca-
tions to be time varying. Here, outputs r

(p)
o = (x

(p)
o , y

(p)
o ) are

drawn from an elliptical distribution as

x(p)o (t) =
LxR

2
cos(2πf (p)

o t+ ϕ(p)
o ) (7a)

y(p)o (t) =
LyR

2
sin(2πf (p)

o t+ ϕ(p)
o ) . (7b)

Here, 0 ≤ R < 1 is a dimensionless parameter controlling the size
of the ellipse, f (p)

o is a scan frequency (sub audio rate), and ϕ(p)
o

is an initial phase. See Figure 1. If different values are used for
each output, with fixedR, then a natural phasing effect is obtained,
while maintaining uniform normalisation for all channels.

2.2. Energy Balance

System (1) satisfies an energy balance of the form

Ḣ = −Q+ P , (8)

where here, a dot indicates ordinary time differentiation. H(t) is
the total stored energy in the plate, Q(t) is power loss, and P(t) is
input power. These can be defined explicitly [19] as

H =

∫∫
D

ρξ

2
(∂tw)

2 +
Q

2
(∆w)2 +

1

2Eξ
(∆Φ)2dr (9a)

Q =

∫∫
D
2ρξσ0(∂tw)

2 + 2ρξσ1|∇∂tw|2dr (9b)

P = f∂tw|ri,t . (9c)

Here, ∇ indicates a gradient with respect to r. All are scalar func-
tions. In particular, both H and Q are non-negative, meaning that
the system is dissipative under zero input conditions (and lossless
when σ0 = σ1 = 0, meaning that the energy H(t) is constant).

3. FDTD METHODS

3.1. Spatial Grid and Difference Operators

As a first step, suppose that the plate surface is discretised with a
2D grid of spacing h = Lx/Nx, for some integer Nx. Then, set
Ny = ⌊Ly/h⌋, where ⌊·⌋ indicates a flooring operation. Here, for
simplicity, the plate side length in the y direction is set to Nyh ≈
Ly . The semi-discrete grid functions wl,m(t) and Φl,m(t), in-
dexed by integers l and m with 1 ≤ l ≤ Nx − 1 and 1 ≤
m ≤ Ny − 1, represent approximations to w(r, t) and Φ(r, t)
at r = −1/2(Lx, Ly) + h(l,m). Due to the choice of simply
supported boundary conditions (3), the grid functions are assumed
to take on values of zero at l = 0, l = Nx, m = 0 and m = Ny—
and thus, such points may be excluded from the algorithm entirely.

For a given grid function ul,m(t), forward and backward spa-
tial differences in the x and y directions, approximating ∂x and ∂y ,
are defined (suppressing time dependence) as

D±
x ul,m = ±ul±1,m−ul,m

h
D±

y ul,m=±ul,m±1−ul,m

h
. (10)

Second derivative approximations follow directly as:

Dxx = D+
xD

−
x Dyy = D+

y D
−
y . (11)

The Laplacian and biharmonic may then be approximated as

D∆ = Dxx +Dyy D∆∆ = D∆D∆ . (12)

Finally, four approximations Dab
xy to ∂x∂y may be defined as

Dab
xy = Da

xD
b
y for a, b ∈ {+,−} . (13)

3.2. Semi-discrete Form

Before moving directly to a semi-discrete form, it is useful to re-
cast the (Nx − 1)× (Ny − 1) grid functions wl,m(t) and Φl,m(t)
as N × 1 column vectors w(t) and Φ(t), through concatena-
tion of consecutive columns of wl,m(t) and Φl,m(t). Here, N =
(Nx − 1)(Ny − 1) is the total number of grid points in either grid
function. The linear operators Dxx, Dyy , Dab

xy , D∆ and D∆∆ can
thus be represented as sparse N × N matrices Dxx, Dyy , Dab

xy ,
D∆ and D∆∆, respectively. Simply supported boundary condi-
tions are assumed directly encoded into these matrices [19]. Also
necessary is an approximation to the Dirac delta function which
selects the excitation location in (1). This may be represented as
an N × 1 column vector 1

h2 j. Many approximations to the delta
function over a grid are available [22]; for simplicity, excitation is
assumed to occur directly at a grid point, so that j is all zero except
for a single value of 1 at the excitation location.

A semi-discrete form of (1) may be written directly as

ρξẅ = −QD∆∆w − 2ρξσ0ẇ + 2ρξσ1D∆ẇ

+ℓ(w,Φ) +
1

h2
jf (14a)

2

Eξ
D∆∆Φ = −ℓ(w,w) . (14b)

Here, a discrete counterpart to the nonlinear operator L, as defined
in (2), may be written in terms of its action on two N × 1 vectors
α and β, as

ℓ(α,β) = Dxxα⊙Dyyβ +Dyyα⊙Dxxβ (15)

− 1
2

∑
a,b∈{+,−}

Dab
xyα⊙Dab

xyβ

where ⊙ denotes element-wise multiplication of two vectors. The
approximation ℓ to L is bilinear and possesses various important
symmetry properties, including that of triple self-adjointness [19]
inherited from the continuous operator L—the reader is referred
to the literature for further discussion [23].

3.3. Energy Balance and Potential Energy Quadratisation

For analysis purposes, it is useful to rewrite the system of ordi-
nary differential equations (14) in terms of displacement w and
momentum p, as:

ẇ = ∇pH ṗ = −∇wH −Rp+ jf . (16)

Here, H(t) is the total system energy, defined as

H = 1
2M

pTp+ V0 + V ′ (17)

and ∇p and ∇w represent gradients with respect to p and w, re-
spectively. The first term in H represents kinetic energy, where
M = ρξh2 is the mass per grid point, in kg. V0 and V ′ represent
contributions to the potential energy due to linear and nonlinear
effects, respectively, and are defined by

V0 = 1
2
wTK0w V ′ = 1

2
ΦTK′Φ , (18)
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where

K0 = Qh2D∆∆ > 0 K′ = h2

Eξ
D∆∆ > 0 . (19)

The positive definiteness conditions above hold under simply sup-
ported boundary conditions. The plate nonlinearity intervenes through
the relationship (14b) between Φ and w.

The equations (16) are an extension of Hamilton’s equations,
including loss and a forcing term. Loss is encoded here through
the matrix R, defined as

R = 2σ0IN︸ ︷︷ ︸
R0

+−2σ1D∆︸ ︷︷ ︸
R1

≥ 0 , (20)

where IN is the N × N identity matrix. Under unforced condi-
tions, with f = 0, the system is dissipative, so that

Ḣ = − 1
M
pTRp ≤ 0 . (21)

H(t) is the semi-discrete counterpart of the total plate energy, as
defined in (9a). When σ0 = σ1 = 0, the system is lossless.

V ′, as defined in (18), is non-negative. Scalar auxiliary vari-
able methods follow from the definition of a new variable ψ, as

V ′ = 1
2
ψ2 . (22)

Notice here that only the contribution V ′ to the energy due to non-
linear effects has been quadratised here—other possibilities are
avalable [12]. System (16) can then be rewritten, using this defini-
tion, as well as the quadratic dependence of H on p, as

ẇ = 1
M
p ṗ = −K0w − ψg −Rp+ jf , (23)

where
g ≜ ∇wψ . (24)

Furthermore, using the chain rule,

ψ̇ = (∇wψ)
T ẇ = gT ẇ . (25)

Given that H is quadratic in p, a second order form of (23)
follows immediately as

Mẅ = −K0w − ψg −MRẇ + jf . (26)

This equation, alongside (25), describing the time evolution of the
scalar auxiliary variable ψ, and the nonlinear relationship (14b),
forms a complete system describing the vibration of the plate.

3.4. Fully Discrete Form

A discrete update preserving an energy balance may be arrived at
directly, generalising results in [12]. First, beginning from system
(23) and (25), define the time series wn and gn, representing ap-
proximations to w(t) and g(t) at times t = nk, for a given time
step k in s, and for integer n, and pn+1/2, ψn+1/2, interleaved
approximations to p(t) and ψ(t) at times t = (n + 1/2)k. Con-
sider the following time-interleaved scheme, resulting from basic
centered differences and averaging of (23) and (25):

wn+1 = wn + k
M
pn+

1
2 (27a)

pn+
1
2 = pn− 1

2 − kK0w
n − k

2

(
ψn+

1
2 + ψn− 1

2

)
gn (27b)

−k
2
R0

(
pn+

1
2 + pn− 1

2

)
− kR1p

n− 1
2 + kjfn

ψn+
1
2 = ψn− 1

2 + 1
2
(gn)T

(
wn+1 −wn−1) . (27c)

Notice that in (27b), the linear and nonlinear parts of the plate dy-
namics have been approximated using different integration rules;
and, in order to arrive at an explicit update, as will be seen shortly,
the loss terms have been approximated separately, according to the
decomposition in (20). fn is an approximation to f(t) at t = nk;
the calculation of gn will be returned to in Section 3.6.

The updates (27a) and (27b) can be consolidated into a single
two-step update in wn

Anwn+1 = Uwn −Cnwn−1 + k2

M

(
fnj− ψn− 1

2 gn

)
(28)

and depends upon the three matrices An, U and Cn defined by

An = IN + k
2
R0 +

k2

4M
gn (gn)T (29a)

U = 2IN − k2

M
K0 − kR1 (29b)

Cn = IN − k
2
R0 − kR1 − k2

4M
gn (gn)T . (29c)

This update is apparently implicit, requiring the inversion of An

at each time step. However, An is of the form of a multiple of the
identity plus a rank-one perturbation, or An = dIN + an(an)T ,
where d = 1 + kσ0 and an = k

2
√
M
gn. A closed-form inverse is

available through the Sherman-Morrison formula [24] as

(An)−1 = d−1

(
IN − an(an)T

d+ (an)Tan

)
. (30)

Thus the linear system solution required in (28) can be performed
in O(N) operations, and the update can be viewed as effectively
explicit.

3.5. Discrete Energy Balance and Stability Condition

In the lossless and source-free case, the scheme (27) is lossless to
machine precision, as demonstrated recently [12]. When loss and
sources are present, an energy balance of the following form holds:

1

k

(
hn+

1
2 − hn− 1

2

)
= −qn + pn , (31)

where

hn+
1
2 = 1

2M
|pn+

1
2 |2 + 1

2
wn+1K0w

n + 1
2

(
ψn+

1
2

)2

(32a)

− k
4M

(pn+
1
2 )TR1p

n+
1
2

qn = 1
4M

(pn+
1
2 +pn− 1

2 )T (R0+kR1)(p
n+

1
2 +pn− 1

2 )(32b)

pn = 1
2M

(pn+
1
2 +pn− 1

2 )T jfn . (32c)

This energy balance mirrors that of the continuous system, from
(9); the major difference is that the expression hn+1/2 for the
stored energy is only non-negative under the condition

h ≥ 2
√
k

√
σ1 +

√
σ2
1 +Q/ρξ , (33)

which is the numerical stability condition for scheme (28). This
is the same condition that follows from an analysis of numerical
stability for the plate under linear conditions (i.e., the Kirchhoff
plate) [19]. In practice, h will be set as close to possible above this
lower bound. Another difference, with respect to the energy for
the continuous system, from (9a), is the appearance of additional
stored energy above due to the loss term—this is the result of using
a non-centered (backward) difference for the frequency-dependent
loss term, allowing an explicit update for the plate.

DAFx.4
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3.6. Linear System Solution: The Biharmonic Operator

The scheme (28), as written, appears to be fully explicit, once
Sherman-Morrison inversion is employed in order to solve the lin-
ear system involving An. A hidden aspect here, though, is the
determination of gn, approximating g(t) as defined in (24) at time
t = nk. Regardless of the form of this approximation, the scheme
(28) will be dissipative under zero-input conditions—note that gn

does not appear explicitly in the energetic expressions in (32). It
must, however, be chosen to be consistent with the definition of
g(t) in order to lead to a convergent algorithm. Note, from the
definition of g, that one may furthermore write, using V ′ = 1

2
ψ2,

g = ∇wψ = 1√
2V ′∇wV

′ . (34)

From the definition of V ′ in terms of Φ, from (18), and also the
definition of Φ in terms of w, from (14b), one may ultimately
arrive at the following form [12] for gn:

gn = − h2√
2(V ′)n

ℓ(wn,Φn) , (35)

where, in discrete time,

(V ′)n = 1
2
(Φn)TK′Φn and D∆∆Φn = −EH

2
ℓ(wn,wn) ,

(36)
and where the bilinear operator ℓ is as defined in (15).

Most of the operations above required in order to form gn are
simple. The exception is the linear system involving the bihar-
monic operator D∆∆ required in (36) in order to determine Φn

from wn. This is the remaining computational bottleneck, and is
inherent to all numerical solutions to the Föppl-von Kármán equa-
tions. Using the fact that, under simply supported conditions, the
biharmonic may be separated into a product of two Laplacians as
D∆∆ = D∆D∆, the linear system to solved at each time step is:

D∆D∆y = c (37)

for a known N × 1 vector c, yielding an N × 1 vector y.
Standard linear system solvers (such as, e.g., those relying on

Cholesky or LU factorisation) are far out of real time for reason-
able plate sizes. See Section 5.1. Here, a very recently developed
solver [25] that exploits the structure of D∆ is employed, leading
to an efficient variant of the Thomas algorithm [26]. It is closely
related to the method proposed by Buzbee [27]. To this end, note
that the scaled N × N Laplacian operator D̃∆ = h2D∆ may be
written explicitly as the Toeplitz-block-Toeplitz form:

D̃∆ =


T I •
I T I

. . .
. . .

. . .
I T I

• I T

 T =


-4 1 •
1 -4 1

. . .
. . .

. . .
1 -4 1

• 1 -4

 .

(38)
Here, block sizes are (Ny −1)× (Ny −1). I is an identity matrix,
and T a Toeplitz matrix as given above. Zero entries are indicated
by •, and D̃∆ is extremely sparse. The matrix T has the closed
form eigendecomposition T = SΛS where

[S]βγ =
√

2
Ny

sin(βγπ/Ny) [Λ]ββ = 2 cos(βπ/Ny)− 4

(39)

for 1 ≤ β, γ ≤ Ny−1. Note that S = ST = S−1 is an orthogonal
(Ny − 1) × (Ny − 1) matrix. Λ is diagonal, and contains the
eigenvalues of D̃∆.

Now, form the N ×N matrix Q as a Kronecker product Q =
INx−1 ⊗ S. Using the orthogonality of S, one has

D̃∆ = QΞQ Ξ =


Λ I •
I Λ I

. . .
. . .

. . .
I Λ I

• I Λ

 . (40)

Given that Q inherits orthogonality from S, one may then write
the solution to (37) as

y = h4QΞ−1Ξ−1Qc . (41)

Note here that Q is sparse, withNx−1 blocks of size (Ny −1)×
(Ny − 1). Also, Ξ is block tridiagonal, with diagonal blocks, and
thus the Thomas algorithm may be applied directly (twice, here).

Other approaches to Toeplitz-block-Toeplitz linear system so-
lution are available, and were tested during the course of this work.
These include extensions of the Levinson-Durbin algorithm due to
Wax and Kailath [28]. One may also note that the matrix S corre-
sponds to a discrete sine transform (DST); fft-based methods were
tried, but were not efficient, due to the small size of Ny , and ex-
hibited great variation depending on the factorisation of Ny . The
method presented above performed best in all tests.

3.7. Output and Interpolation

Moving outputs are assumed drawn at locations (r
(p)
o )n sampled

from the elliptical trajectories r(p)o (t), p = 1, . . . , P as defined in
(7), and at times t = nk. Interpolation is a necessity in this setting,
in order to avoid numerical artefacts (“zipper noise").

Suppose, at a given time instant, the coordinates of one of the
trajectories takes on the value η = (r

(p)
o )n. One may write

η = h(lo,mo) + h(ζx, ζy) (42)

uniquely for integer grid indeces (lo,mo) and fractional addresses
(ζx, ζy), where 0 ≤ ζx, ζy < 1. Assuming an interpolation
width of 2J points, one may form an interpolant wo from the two-
dimensional grid function wl,m as:

wo =

J∑
νx=−J+1

J∑
νy=−J+1

bνxx (ζx)b
νy
y (ζy)wlo+νx,mo+νx . (43)

Here, the interpolant is assumed separable, so that bνxx (ζx) and
b
νy
y (ζy), −J +1 ≤ νx, νy ≤ J are one-dimensional interpolation

coefficients. In this work, approximations are assumed to be of
Lagrange type, with J = 2.

When the grid function wl,m is reconstituted as an N × 1
column vector w, then this linear operation may be expressed as
an inner product

wo = bTw , (44)
where the N × 1 vector b incorporates the interpolation coeffi-
cients bx and by The extension to the case of P time-varying out-
put trajectories is straightforward, and may be represented as

wn
o = (Bn)Twn . (45)

Here, wn
o is a P × 1 column vector of output signals, and Bn =

[bn,(1) . . .bn,(P )] is anN×P matrix of interpolation coefficients.
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Figure 3: Spectrograms of output from a small plate model, at different excitation amplitudes, as indicated.

4. IMPLEMENTATION

4.1. Parameter Sets

Complete parameter sets for the gong, assuming a struck excita-
tion, and P outputs over an elliptical trajectory, are as follows:

Oplate = {E, ρ, ξ, ν, Lx, Ly, σ0, σ1} (46a)
OI = {t0, T, fmax} (46b)

OO = {R, f (1)
o , . . . , f (P )

o , ϕ(1)
o , . . . , ϕ(P )

o } . (46c)

The sample rate Fs must also be supplied. For the given system,
this set of parameters is redundant, in terms of the space of possible
sound outputs. One approach to reducing the number of defining
parameters in Oplate is to non-dimensionalise the system (1) with
respect to w and Φ, and to spatially scale the domain to unit area.
Equally, and perhaps more intuitively, one could fix the plate ma-
terial and thickness, leaving only the plate dimensions variable2.
Furthermore, it is useful to introduce the equivalent parameters

A = LxLy α = Ly/Lx (47)

which are the plate surface area in m2 and dimensionless aspect
ratio respectively. A is useful, as it will scale directly with compu-
tational cost, independently of α. Furthermore, it is more intuitive
to set the loss parameters in terms of perceptually-relevant decay
times T60,0 and T60,c at 0 Hz and fc Hz, respectively as

σ0 =
6 ln(10)

T60,0
σ1 =

6 ln(10)
√
Q/ρξ

2πfc

(
1

T60,c
− 1

T60,0

)
,

(48)
with T60,0 ≥ T60,c. A reduced parameter set O′

plate results:

O′
plate = {A,α, T60,0, T60,c} . (49)

For the reduced set, A and α must remain fixed over the course of
a simulation. It is possible to vary T60,0 and T60,c, though in this
case one must back off slightly from the stability condition given
in (33) to accommodate the range of such variations.

4.2. Real-time Implementation

Prototyping was carried out in Matlab, using a sparse vector/matrix
representation following directly from the form of the scheme in
(28). Such a representation is optimal in terms of performance

2In this article, the material is taken to be steel, with E = 2×1011 Pa,
ρ = 7850 kg m−3, and ν = 0.3, and the plate thickness is ξ = 0.5 mm.

as well as readability and debugging in Matlab. (The additional
biharmonic linear system solution in (36) was carried out using a
generic Cholesky factorisation computed outside the runtime loop.)

In order to achieve real-time performance as in, e.g., an audio
plug-in format, highly-optimised single-threaded C++ code is re-
quired. Previous testing has shown that a direct “matrix-unrolled"
approach is up to 10× faster than using a sparse matrix repre-
sentation directly in C++ [29]. There are two main reasons why
unrolling the sparse matrix form and applying stencil operations
directly is more efficient. First, the vector/matrix representation,
while sparse, is highly redundant with many repeated values, and
can be reduced to a very small number of stencil coefficients. Sec-
ond, in unrolled form the compiler is much more likely to be able
to vectorize the code using a suitable optimisation level, and even
if not it is relatively simple to manually apply vector intrinsics to
the update. Sparse matrix data structures are more complicated in
this respect due to the irregular data patterns used in typical re-
duced memory formats such as CSR (Compressed Spare Row).

For the gong algorithm described here, there are 12 different
array operations that are required at each time-step, not includ-
ing the core element of the linear system solution, as described in
Section 3.6. By unrolling the sparse matrix representation and us-
ing -O3 optimisation level in Clang, the compiler was able to fully
vectorize each array operation with AVX vectors without having to
write any manual intrinsics at all. The solver element, however, did
require manual application of intrinsics in order to achieve maxi-
mum efficiency.

5. NUMERICAL RESULTS

5.1. Timings

For numerical tests, three machines were used: (1) LinuxLap: a
Linux laptop with an Intel 12th Gen quad-core i7-1260P CPU; (2)
WinPC: a Windows desktop with an AMD Ryzen 7 8-core 5800X
CPU; and (3) MBA: MacBook Air with an Intel 10th Gen quad-
core i5 CPU; All tests were written in C++ and compiled with -O3
and -mavx2 flags.

Computation times for the complete plate simulation algo-
rithm, for various choices of plate area and aspect ratio on different
machines are shown in Table 1. These indicate that computation
time tracks the total surface area A reasonably closely, regardless
of the aspect ratio, which is as expected. They indicate faster than
real time performance for these plate areas, which are small, but
definitely within the realm of musical gongs.

Table 2 shows the comparison between computation times for
the biharmonic solver presented in Section 3.6 and those for heavily-
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A (m2) α Nx Ny LinuxLap WinPC MBA
0.06 1.24 25 31 0.484 0.635 0.908
0.06 0.80 31 25 0.569 0.649 0.993
0.05 1.38 21 29 0.365 0.441 0.636
0.05 0.72 29 21 0.393 0.510 0.695
0.05 2.06 17 35 0.278 0.360 0.761
0.05 1.00 25 25 0.393 0.476 0.815
0.05 3.46 13 45 0.280 0.355 0.664
0.04 1.32 19 25 0.295 0.397 0.562
0.04 0.76 25 19 0.296 0.421 0.653
0.03 1.24 17 21 0.150 0.183 0.264
0.03 2.08 13 27 0.150 0.190 0.287

Table 1: Timings, in s, to compute 1 s output for plates of different
areasA and aspect ratiosα. Grid sizesNx andNy are as indicated.

14× 14 16× 20 23× 17 25× 25
Our solver 0.054 0.135 0.118 0.279
LU 0.375 0.652 0.865 1.735
Cholesky 0.254 0.476 0.531 0.978

Table 2: Comparison between computation times, in s, for the bi-
harmonic solver presented in Section 3.6 and alternative solvers
from Eigen on WinPC, for typical grid sizes Nx ×Ny .

used generic linear system solvers like based on LU and Cholesky
decompositions. Here we have used realisations of these solvers
from Eigen[30], a well-known high-level C++ library for linear
algebra.

Table 3 shows the percentage split between the biharmonic
solver element of the timeloop code and the remaining sections.
The solver is by far the most significant element, taking up to 76%
of the computation time at each time-step.

5.2. Sound Output

It is useful to examine the effect of the plate nonlinearity through
spectrograms of sound output. The sample rate is chosen as Fs =
44.1 kHz, and the material parameters and thickness are fixed as
in the footnote on page 6. Reduced plate parameters are chosen as
α = 1.4, T60,0 = 20 s and T60,c = 10 s, with fc = 1 kHz. The
excitation is of the form of (5), with t0 = 0 s. Spectrograms are
calculated using a window size of 2048 points, with a hop size of
128 points and Hann windowing applied.

Consider first a very small plate with A = 0.01 m2, and the
effect of increased excitation amplitude fmax, where all other pa-
rameters are held constant. Output is drawn at the fixed location
ro = (Lx/5, 0). In this case, the excitation duration is T = 2
ms. See Figure 3. Under low-amplitude excitation amplitude, the
linear behaviour of the plate is recovered, and distinct constant

Plate size Biharmonic Solver Remaining
19× 25 (0.04, 1.2) 72.3% 27.7%
25× 31 (0.06, 1.2) 75.3% 24.7%
19× 35 (0.05, 1.8) 72.4% 27.6%
29× 21 (0.05, 0.7) 76.2% 23.8%

Table 3: Comparison of computation time for the solver vs remain-
ing elements of the optimised C++ code at each time-step.

modal frequencies are observed. At higher amplitudes, effects of
pitch glides are observed—these glides are not uniform across all
partials, however, as they would be if a simpler model of nonlin-
ear plate vibration (e.g. that of Berger [15]) were used. At very
high amplitudes, the partials themselves are replaced by wideband
noise—the crash.

As a further illustration, consider now the case of a larger
plate, with A = 0.16 m2, again under increasing excitation am-
plitude, and now with excitation duration T = 4 ms. See Figure
4. In this case, the characteristic “swell" of a gong-like instru-
ment may be observed—a slow migration of energy to the high
frequency range over the first several hundred milliseconds.

As a final example, consider a comparison between spectro-
grams of sound output for a small plate with A = 0.01 m2, and
with an excitation amplitude fmax = 20 N and duration T = 4
ms, in the presence of time-varying monophonic output, drawn
from an ellipse with R = 0.4, and with a scan frequency of 1 Hz.
See Figure 5. Easily visible are complex modulations of the indi-
vidual frequency components, characteristic of that which occurs
in an instrument that may be free to exhibit rigid-body oscillation
relative to the listener.

Figure 4: Spectrograms of output from a large plate model, at dif-
ferent excitation amplitudes, as indicated.
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Figure 5: Spectrograms of output from a small plate model, with
a static output location (left), and a time-varying output location
(right).

6. CONCLUDING REMARKS

In this paper, it has been shown that it is possible to implement
computationally-intensive physical models in real time—in this
case the Föppl-von Kármán model of high amplitude plate vibra-
tion that is necessary in order to emulate gongs. Due to the com-
plexity of the system, achieving real-time performance requires
optimisation at multiple levels. First: the design of a numerically
stable explicit integrator, as presented here, has been the key to
breaking the real-time barrier. The computational advantage here
hinges on the exploitation of matrix structure (in this case, rank-
1 perturbation of the identity—a general property of SAV designs
for Hamiltonian or near-Hamiltonian systems [12]) But even when
this bottleneck has been removed, there remains the problem of
linear system solution (of the biharmonic operator) in the run-time
loop. Fast solution has been approached by exploiting a differ-
ent type of matrix structure (block Toeplitz in this case). This
type of acceleration is much more targeted at the particular case
of the Föppl-von Kármán system. Further acceleration depends on
the use of low-level parallelisation tools. The larger lesson here
is that for physical modeling synthesis from any reasonably com-
plex system, a silver bullet is likely not available—rather, in order
to achieve good performance, great attention must be paid to the
specifics of the system at hand.

Many simplifications to more realistic models of percussion
instruments have been made in order to arrive at a real-time im-
plementation. Among these are: a) the restriction to a rectangu-
lar geometry with simply-supported conditions; b) the assumption
of a flat plate rather than a curved shell, which is more usual; c)
the assumption of a uniform thickness; and d) the consolidation
of effects of loss due to various mechanisms (radiation, viscother-
mal) to a basic two-parameter loss model. Including any of these
effects would have no impact on the explicit integration method,
provided the system may still be written in terms of the extension
of a Hamiltonian system. On the other hand, the block-Toeplitz
solver is highly dependent on restrictions a) to c). Coping with
restriction d) would necessarily increase the temporal order of the
scheme as a whole, leading to a larger footprint in terms of both
memory usage (not a major concern here) as well as computational
cost.
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