Download Unsupervised Estimation of Nonlinear Audio Effects: Comparing Diffusion-Based and Adversarial Approaches
Accurately estimating nonlinear audio effects without access to paired input-output signals remains a challenging problem. This work studies unsupervised probabilistic approaches for solving this task. We introduce a method, novel for this application, based on diffusion generative models for blind system identification, enabling the estimation of unknown nonlinear effects using blackand gray-box models. This study compares this method with a previously proposed adversarial approach, analyzing the performance of both methods under different parameterizations of the effect operator and varying lengths of available effected recordings. Through experiments on guitar distortion effects, we show that the diffusion-based approach provides more stable results and is less sensitive to data availability, while the adversarial approach is superior at estimating more pronounced distortion effects. Our findings contribute to the robust unsupervised blind estimation of audio effects, demonstrating the potential of diffusion models for system identification in music technology.
Download A Study of Control Methods for Percussive Sound Synthesis Based on Gans
The process of creating drum sounds has seen significant evolution in the past decades. The development of analogue drum synthesizers, such as the TR-808, and modern sound design tools in Digital Audio Workstations led to a variety of drum timbres that defined entire musical genres. Recently, drum synthesis research has been revived with a new focus on training generative neural networks to create drum sounds. Different interfaces have previously been proposed to control the generative process, from low-level latent space navigation to high-level semantic feature parameterisation, but no comprehensive analysis has been presented to evaluate how each approach relates to the creative process. We aim to evaluate how different interfaces support creative control over drum generation by conducting a user study based on the Creative Support Index. We experiment with both a supervised method that decodes semantic latent space directions and an unsupervised Closed-Form Factorization approach from computer vision literature to parameterise the generation process and demonstrate that the latter is the preferred means to control a drum synthesizer based on the StyleGAN2 network architecture.
Download Towards Efficient Modelling of String Dynamics: A Comparison of State Space and Koopman Based Deep Learning Methods
This paper presents an examination of State Space Models (SSM) and Koopman-based deep learning methods for modelling the dynamics of both linear and non-linear stiff strings. Through experiments with datasets generated under different initial conditions and sample rates, we assess the capacity of these models to accurately model the complex behaviours observed in string dynamics. Our findings indicate that our proposed Koopman-based model performs as well as or better than other existing approaches in nonlinear cases for long-sequence modelling. We inform the design of these architectures with the structure of the problems at hand. Although challenges remain in extending model predictions beyond the training horizon (i.e., extrapolation), the focus of our investigation lies in the models’ ability to generalise across different initial conditions within the training time interval. This research contributes insights into the physical modelling of dynamical systems (in particular those addressing musical acoustics) by offering a comparative overview of these and previous methods and introducing innovative strategies for model improvement. Our results highlight the efficacy of these models in simulating non-linear dynamics and emphasise their wide-ranging applicability in accurately modelling dynamical systems over extended sequences.
Download Antialiased Black-Box Modeling of Audio Distortion Circuits Using Real Linear Recurrent Units
In this paper, we propose the use of real-valued Linear Recurrent Units (LRUs) for black-box modeling of audio circuits. A network architecture composed of real LRU blocks interleaved with nonlinear processing stages is proposed. Two case studies are presented, a second-order diode clipper and an overdrive distortion pedal. Furthermore, we show how to integrate the antiderivative antialiaisng technique into the proposed method, effectively lowering oversampling requirements. Our experiments show that the proposed method generates models that accurately capture the nonlinear dynamics of the examined devices and are highly efficient, which makes them suitable for real-time operation inside Digital Audio Workstations.
Download Adversarial Synthesis of Drum Sounds
Recent advancements in generative audio synthesis have allowed for the development of creative tools for generation and manipulation of audio. In this paper, a strategy is proposed for the synthesis of drum sounds using generative adversarial networks (GANs). The system is based on a conditional Wasserstein GAN, which learns the underlying probability distribution of a dataset compiled of labeled drum sounds. Labels are used to condition the system on an integer value that can be used to generate audio with the desired characteristics. Synthesis is controlled by an input latent vector that enables continuous exploration and interpolation of generated waveforms. Additionally we experiment with a training method that progressively learns to generate audio at different temporal resolutions. We present our results and discuss the benefits of generating audio with GANs along with sound examples and demonstrations.
Download DDSP-SFX: Acoustically-Guided Sound Effects Generation with Differentiable Digital Signal Processing
Controlling the variations of sound effects using neural audio synthesis models has been a challenging task. Differentiable digital signal processing (DDSP) provides a lightweight solution that achieves high-quality sound synthesis while enabling deterministic acoustic attribute control by incorporating pre-processed audio features and digital synthesizers. In this research, we introduce DDSP-SFX, a model based on the DDSP architecture capable of synthesizing high-quality sound effects while enabling users to control the timbre variations easily. We integrate a transient modelling algorithm in DDSP that achieves higher objective evaluation scores and subjective ratings over impulsive signals (footsteps, gunshots). We propose a novel method that achieves frame-level timbre variation control while also allowing deterministic attribute control. We further qualitatively show the timbre transfer performance using voice as the guiding sound.
Download Searching for Music Mixing Graphs: A Pruning Approach
Music mixing is compositional — experts combine multiple audio processors to achieve a cohesive mix from dry source tracks. We propose a method to reverse engineer this process from the input and output audio. First, we create a mixing console that applies all available processors to every chain. Then, after the initial console parameter optimization, we alternate between removing redundant processors and fine-tuning. We achieve this through differentiable implementation of both processors and pruning. Consequently, we find a sparse mixing graph that achieves nearly identical matching quality of the full mixing console. We apply this procedure to drymix pairs from various datasets and collect graphs that also can be used to train neural networks for music mixing applications.
Download Differentiable All-Pole Filters for Time-Varying Audio Systems
Infinite impulse response filters are an essential building block of many time-varying audio systems, such as audio effects and synthesisers. However, their recursive structure impedes end-toend training of these systems using automatic differentiation. Although non-recursive filter approximations like frequency sampling and frame-based processing have been proposed and widely used in previous works, they cannot accurately reflect the gradient of the original system. We alleviate this difficulty by reexpressing a time-varying all-pole filter to backpropagate the gradients through itself, so the filter implementation is not bound to the technical limitations of automatic differentiation frameworks. This implementation can be employed within audio systems containing filters with poles for efficient gradient evaluation. We demonstrate its training efficiency and expressive capabilities for modelling real-world dynamic audio systems on a phaser, time-varying subtractive synthesiser, and feed-forward compressor. We make our code and audio samples available and provide the trained audio effect and synth models in a VST plugin1 .
Download Fast Differentiable Modal Simulation of Non-Linear Strings, Membranes, and Plates
Modal methods for simulating vibrations of strings, membranes, and plates are widely used in acoustics and physically informed audio synthesis. However, traditional implementations, particularly for non-linear models like the von Kármán plate, are computationally demanding and lack differentiability, limiting inverse modelling and real-time applications. We introduce a fast, differentiable, GPU-accelerated modal framework built with the JAX library, providing efficient simulations and enabling gradientbased inverse modelling. Benchmarks show that our approach significantly outperforms CPU and GPU-based implementations, particularly for simulations with many modes. Inverse modelling experiments demonstrate that our approach can recover physical parameters, including tension, stiffness, and geometry, from both synthetic and experimental data. Although fitting physical parameters is more sensitive to initialisation compared to methods that fit abstract spectral parameters, it provides greater interpretability and more compact parameterisation. The code is released as open source to support future research and applications in differentiable physical modelling and sound synthesis.
Download Optimization techniques for a physical model of human vocalisation
We present a non-supervised approach to optimize and evaluate the synthesis of non-speech audio effects from a speech production model. We use the Pink Trombone synthesizer as a case study of a simplified production model of the vocal tract to target nonspeech human audio signals –yawnings. We selected and optimized the control parameters of the synthesizer to minimize the difference between real and generated audio. We validated the most common optimization techniques reported in the literature and a specifically designed neural network. We evaluated several popular quality metrics as error functions. These include both objective quality metrics and subjective-equivalent metrics. We compared the results in terms of total error and computational demand. Results show that genetic and swarm optimizers outperform least squares algorithms at the cost of executing slower and that specific combinations of optimizers and audio representations offer significantly different results. The proposed methodology could be used in benchmarking other physical models and audio types.