
Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

OPTIMIZATION TECHNIQUES FOR A PHYSICAL MODEL OF HUMAN VOCALISATION

Mateo Cámara

Information Processing & Telecomm. Center
Universidad Politécnica de Madrid

Madrid, Spain
mateo.camara@upm.es

Zhiyuan Xu

Centre for Digital Music
Queen Mary University of London

London, UK
zhiyuan.xu@qmul.ac.uk

Yisu Zong

Centre for Digital Music
Queen Mary University of London

London, UK
y.zong@qmul.ac.uk

José Luis Blanco

Information Processing & Telecomm. Center
Universidad Politécnica de Madrid

Madrid, Spain
jl.blanco@upm.es

Joshua D. Reiss

Centre for Digital Music
Queen Mary University of London

London, UK
joshua.reiss@qmul.ac.uk

ABSTRACT

We present a non-supervised approach to optimize and evaluate
the synthesis of non-speech audio effects from a speech produc-
tion model. We use the Pink Trombone synthesizer as a case study
of a simplified production model of the vocal tract to target non-
speech human audio signals –yawnings. We selected and opti-
mized the control parameters of the synthesizer to minimize the
difference between real and generated audio. We validated the
most common optimization techniques reported in the literature
and a specifically designed neural network. We evaluated several
popular quality metrics as error functions. These include both ob-
jective quality metrics and subjective-equivalent metrics. We com-
pared the results in terms of total error and computational demand.
Results show that genetic and swarm optimizers outperform least
squares algorithms at the cost of executing slower and that specific
combinations of optimizers and audio representations offer signif-
icantly different results. The proposed methodology could be used
in benchmarking other physical models and audio types.

1. INTRODUCTION

Articulatory synthesis provides a unique opportunity to delve into
the mechanics of speech production [1, 2]. Unlike black box mod-
els, physical models achieve an interpretable representation of the
inner characteristics of the vocal tract. This allows for a deeper un-
derstanding of the processes involved in speech production. They
also provide precise control of the speech’s articulatory, resonance,
and phonatory characteristics, such as the position of the tongue,
lips, existing constrictions, or nose size; as well as informed con-
trol of model parameters. This makes natural-sounding synthetic
speech samples less prone to artifacts than other synthesis models.
Furthermore, they may produce any type of human sound coming
out of the mouth and the nose. Those include sounds that are not
words, such as sighs, laughs, yawns, and so on.

These non-speech sounds are becoming increasingly impor-
tant in today’s audiovisual productions and digital interactions.
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From the sound effects in movies and videogames to the sound-
scapes in podcasts and audiobooks [3, 4, 5], the ability to gener-
ate these sounds has become a critical aspect to produce realistic
performances. Analyzing the ability of models to construct these
types of sounds is crucial to understand the limits and limitations
of models [6], as well as the underlying complexities of produc-
ing naturally sounding audio samples. Answering those questions
opens up new possibilities for sound and user-experience design-
ers, video-game developers, and audio production professionals
looking for new and innovative ways to create high-quality, realis-
tic, and engaging sound experiences.

Physical models for speech synthesis pose challenges that are
extensively reported in the literature. They often include many pa-
rameters that are difficult to configure simultaneously to achieve
high-quality sounds. Their combined optimization can be demand-
ing, computationally expensive, time-consuming, and challenging
to implement in real time. These complications explain the need
to improve and optimize the synthesizer.

Our research focuses on articulatory parameters from a black-
box point of view. We optimize synthesizers without paying spe-
cific attention to what each parameter represents to maximize ob-
jective similarity by minimizing the difference between a target
signal and the synthesized signal. This ensures superior general-
ization capabilities for the proposed method and valuable results
for other contexts.

In this contribution, we look at the physical model known as
the Pink Trombone (PT)1. This is a simplified version of the vocal
tract that uses a small set of fundamental parameters to control the
shape and movements of the articulators during speech production
[7]. We fixed its articulatory bounds to focus on sounds that a
human could physically produce, and used these to optimize the
PT and compare its result with human audio samples.

We conduct a case study using synthetic, sustained, and yawn-
ing sounds to understand its capabilities and limitations. We test
different black-box strategies to predict the synthesizer control pa-
rameters, including well-known optimization techniques and Deep
Neural Networks, trained on a set of PT synthetic samples. For
experimentation, we use sound files generated by the PT, as well
as audio clips downloaded from the Freesound platform [8].

Experiments shall lay the foundations for studies on articula-
tory and production models with multiple parameters and different

1https://dood.al/pinktrombone/
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audio types. The dataset, test sounds, and algorithms are available
online2. Our goals for this contribution are the following:

• Determine if PT parameters can be accurately predicted ex-
clusively from acoustic features. We optimize synthesizer
control variables from audio samples as a black-box.

• Determine best optimization technique for articulatory vari-
ables. We evaluate how different optimizers perform in
front of increasingly challenging sounds.

• Determine the error metric that yields a more satisfactory
outcome. We benchmark different techniques for standard
error metrics and acoustic parameterizations of audio files.

The remainder of this paper is organized as follows. Sec. 2
expands on the optimization techniques and the parameterizations
reported in the literature. Sec. 3 describes the experiments covered
to meet our objectives. Sec. 4 analyzes and discusses the results
obtained, and Sec. 5 concludes the paper.

2. BACKGROUND

For sound-matching optimization, one may focus on the control
parameters of the synthesizer, the input acoustic features extracted
from the audio, and the process that leads to optimization. All
these aspects provide insights into the methodologies and objec-
tives of various optimization studies in synthesizers. Fig. 1 depicts
the overall schematic of the optimization process.

2.1. Optimization Methods

Considering the complexity of sound synthesizers, there is a need
for reliable optimization techniques. Numerous optimization meth-
ods have been investigated in terms of optimizing parameters for
physical models or traditional synthesizers. The related work can
be organized into two main categories:

Search-based Methods: these have been widely applied to phys-
ical models in audio synthesis due to their ability to handle non-
differentiable, non-linear, and non-convex optimization problems.
They are universal and regard the synthesizer as a black-box model,
focusing solely on parameter space optimization. Standard ways
include the use of Evolutionary Algorithms (EA), including Evo-
lution Strategies [9], Genetic Algorithm (GA) [10], or Particle
Swarm Optimization (PSO) [11]. Other methods, including Hill
Climber [12], Levenberg–Marquardt Algorithm [13] and Nelder-
Mead Method [14] are also considered.

Model-based Methods: machine learning (ML) models have be-
come mainstream for synthesizer parameter estimation in recent
years. They learn the mapping between the latter and audio fea-
tures directly from data. In [15], authors used a strided Convo-
lutional Neural Network (CNN) to predict the parameters of a
subtractive synthesizer. Recent work proposed differentiable digi-
tal signal processing (DDSP) [16] and integrated an additive syn-
thesizer with a filtered noise synthesizer into the end-to-end deep
learning framework. These allow direct gradient descent optimiza-
tion. DDSP is now widely utilized for parameter estimation [17],
despite its need for precise reproduction of the target synthesizer
in a differentiable manner, which poses difficulties.

2https://slash-trombone.github.io/

Figure 1: Schematic on the optimization process.

Each approach has its own benefits and limitations, leading to
ongoing discussions. In [12], authors compared sound-matching
performance on a VST synthesizer using two search strategies and
three neural network methods. Results indicated that search meth-
ods are limited by their computational cost, and modeling meth-
ods are restricted to the inductive bias of model structure and data
availability. We tested these limitations for the PT, including sim-
ple speech and non-speech vocalisations to evaluate the perfor-
mance of the optimized model parameters to reproduce sounds.

2.2. Parameter Selection

The control parameters of the synthesizer and the input parame-
ters for the optimizer largely depend on the synthesis technique
and the desired outcomes, in accordance with Fig. 1. We focus
on the PT control parameters –see Table 1. Physical models may
alternatively use local constrictions to describe the configuration
required for the vocal tract to produce a certain sound. The PT can
actually operate on those as well. Nonetheless, we are interested
in the primary ones.

Furthermore, inputs to the optimizer must represent the acous-
tic content of the audio samples so that the model may produce
accurate outputs. For this task, we shall look at acoustic features.

2.3. Acoustic Features Extraction

Various acoustic features have been used in synthesizer optimiza-
tion studies to evaluate and quantify the quality of the synthesized
sounds to guide the optimization process. Spectral features are the
most common, but finding the best metric with good perceptual
consistency is still an open question [18]. In [19] authors focus on
the spectral norm error, [10] used spectral norm plus spectral cen-
troid error extracted from short-time Fourier transform (STFT) for
each frame, [9] used relative spectral error, which is computed by
summing normalized differences between frequency components
extracted from two spectra, [20] combined the least squared er-
ror of the STFT of two sounds plus the perceptual error apply-
ing a narrow band masking curve. On error computation, [12]
used Euclidean distance of Mel-Frequency Cepstral Coefficients
(MFCCs), [16] used a deep representation extracted from MFCCs,
and multiscale spectral loss plus perceptual loss, [15] compared
the following features as the Deep Neural Networks (DNN) in-
put: a set of spectral features [21], STFT, and deep representa-
tion extracted by a CNN from the raw signal. Results showed
that STFT and deep representations seem more representative than
handcrafted features. Our aim now is to identify suitable ones for
the PT parameters optimization.

DAFx.2



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

3. EXPERIMENTATION

We designed our experiments to focus on three specific character-
istics that are relevant to the acoustic-to-articulatory inversion: the
optimizer used to predict control variables, the audio representa-
tion to compute the difference between original and synthesized
audio, and the signal complexity.

3.1. Pink Trombone Fundamentals

The PT is a simple vocal tract model that can be interacted with
through a web interface. It is a Kelly-Lochbaum (KL) type model
whose technical details can be found in [22]. In our black-box case
study, we focused on the number of parameters to be used and their
bounds. Table 1 summarizes these, which correspond to physical
attributes of the vocal tract. We aimed to decouple the meaning of
these parameters from their human meaningfulness for our method
to be useful to any synthesizer.

Table 1: Pink Trombone parameters and their bounds.

Pink Trombone Parameters Lower bound Upper bound
Pitch (Hz) 75 330
Voiceness 0 1
Tongue Index 14 27
Tongue Diameter (cm) 1.55 3
Lips Diameter (cm) 0.6 1.2
Constriction index 12 42
Constriction Diameter (cm) 0.6 1.2
Throat Constriction (cm) 0.5 1.0

3.2. Signal complexity

Signal complexity refers to the challenges we pose to the optimiz-
ers to predict the exact parameters. In that sense, we consider three
independent characteristics of the signal. First, the origin of the
audio file: audio generated by a speech synthesizer or a person.
Second, variations over time: sustained notes or dynamic audio
(such as a yawn). Third, number of variables to optimize: related
to the characteristics of the synthesizer. Hereafter we enumerate
all experiments conducted from the least to the most complex.

• PT generated sounds for which:

– One of the control parameters is unknown.

– All of the control parameters are unknown.

– Gaussian white noise is added. This evaluates the ro-
bustness of optimizers dealing with non-ideal signals.

– Control parameters vary over time.

• Audio clips containing:

– Sustained vowel sounds.

– Yawnings.

3.3. Audio Representation and Quality Assessment

3.3.1. Representations focusing on spectral difference

To minimize the difference between the target and reconstructed
sound, we focused on the spectral features of the audio signals.
The following list includes all the transformations evaluated:

• STFT. A window size of 1024 samples with a 2x overlap
STFT was taken.

• Multiscale spectrogram. The window sizes were {64, 128,
256, 512, 1024}, with a 75% overlap.

• MEL-spectrogram. We used 128 filters in the MEL bank up
to a maximum frequency of 8 KHz.

• MFCCs. We took 20 cepstral coefficients from the MEL-
spectrograms.

Computations were performed in Python 3.9, using the Au-
raLoss library [23]. The Mean Absolute Error (MAE) between the
input and reconstructed audio was computed as the error function.

3.3.2. Perceptual metrics

In addition to MAE, we also computed a set of perceptual quality
and intelligibility metrics. These metrics were not used as error
functions in the optimization process. The findings may be rep-
resentative of the perceptual similarity between sounds. However,
we encourage readers to listen to the results we posted online. The
following full reference metrics were analyzed:

• PESQ: Perceptual Evaluation of Speech Qlt. [24].

• PEAQ: Perceptual Evaluation of Audio Qlt. [25].

• ViSQOL: Visually-Inspired Speech Qlt. Obj. Listener [26].

• STOI: Short-Time Objective Intelligibility [27].

3.4. Selected Optimizers

We used optimization algorithms and a CNN to predict the con-
trol parameters of the synthesizer. We fed the algorithms with the
MAE between the original and the synthesized signal. Hereafter
we briefly introduce the selected optimization algorithms, which
we have evaluated in terms of computational cost and reconstruc-
tion error.

Genetic Algorithm (GA): is an optimization technique inspired
by natural selection and genetics [28]. The candidate solutions are
defined by a set of genes. In every generation (loop over all candi-
dates), the genes are able to randomly change (mutation), combine
with other candidates (crossover), and be selected (optimization)
to search for optimal solutions in the solution space. The fitness
function seeks to minimize differences in the input/output signals.

We used 32 bits to define the genes, a crossover rate of 0.9, a
mutation rate of 0.03, and a population of 10 individuals.

Particle Swarm Optimization (PSO): is a nature-inspired meta-
heuristic optimization technique that simulates the social behavior
of swarms [29]. PSO operates by iteratively adjusting the position
of particles within the search space based on their individual and
global best experiences, converging towards the optimal solution.
In our case, we set acceleration parameters c1 = 0.5, c2 = 0.3
(trust in itself, trust in its neighbors), and inertia weight w = 0.9,
with 10 particle population.

Trust Region reFlective (TRF): The Trust Region reFlective
[30] algorithm is a computational technique for solving least squares
optimization problems. It employs a model-based method, seeking
to minimize a function by iteratively creating simplified models of
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the objective function within certain trusted regions. The term “re-
flective” refers to the method’s way of handling boundaries and
constraints: if a proposed step hits a boundary, it is reflected in the
feasible region.

Nelder-Mead Method (NM): also known as the downhill sim-
plex method [31], is a multidimensional optimization technique
well suited for non-linear problems. The algorithm starts with an
initial simplex, a set of n+1 points in an n-dimensional space. The
algorithm iteratively updates the position of the simplex by reflect-
ing, expanding, contracting, or shrinking it, based on the values of
the function being optimized at the vertices of the simplex.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES):
is a stochastic optimization algorithm that uses information about
the distribution of the samples generated by the algorithm to guide
the search for the optimal solution [32]. The algorithm starts with
an initial guess for the solution and then generates a set of samples
around this point. The distribution of these samples is then up-
dated based on the fitness of the samples, with higher-fitness sam-
ples being more likely to be selected. As the algorithm progresses,
outcomes increasingly concentrate around the optimal solution.

Neural network prediction (NN): In addition to the optimiza-
tion techniques, we tested the capability of neural networks to pre-
dict the control variables based on the acoustic features. We de-
signed a CNN that admits spectrograms as input and outputs the
control variables. To train it we collected a database of 400,000
different PT clips. We trained four different networks, each admit-
ting as input for each audio representation mentioned in subsection
3.3.1. The network has been coded with Pytorch 1.7.1, with 2 con-
volutional layers, ReLU as the activation function, 0.0001 as the
learning rate, ADAM optimizer, and following the 60/20/20 data
splitting strategy between training, validation, and test.

3.5. Materials

Attending to the scope of this contribution, the assessment of the
performance achieved by the different techniques, audio represen-
tations, and optimizers in predicting the parameters of the physical
model for sound-matching required two sets of audio files:

• Synthetic audio samples, generated at 48 kHz sampling rate
and 1 s long. To generate these, we used the Programmable
version of the PT3 modified to be a Node.js server. We
generated 80 audio clips with random control parameters.

• Audio samples downloaded from Freesound containing ut-
terances from different speakers. We focused on sustained
vowels (5 clips) and yawnings (8 clips). The vowels are one
second long and the yawnings are three seconds on average.
All files were recorded at a 48 kHz sampling rate to match
the same conditions as the synthetic audio.

4. RESULTS

In this section, we present the results of the experiments aimed at
predicting control parameters for PT. We sought to fix the same
conditions for all optimizers to ensure a fair comparison. Some
considerations apply to all experiments:

3https://github.com/zakaton/Pink-Trombone

Figure 2: Optimizer performance over one control parameter. X-
axis includes the optimizers. Y-axis represents the normalized er-
ror. Each bar is a control parameter.

• Error values are normalized with respect to the maximum
and minimum values that each parameter can take.

• The random seed was fixed to randomize the PT control pa-
rameters in each experiment, such that the optimizers face
the same initial conditions in all cases.

• Each experiment was repeated 20 times. Initial conditions
and target values were randomized.

• All optimizers had the same stop criterion: reach an error of
less than 0.0001 in the metric or stop to improve the relative
error with respect to the previous 20 loops.

4.1. Optimization of PT-generated sounds

Hereafter we present the results of the different tests that were con-
ducted using PT synthetic audio clips as inputs.

4.1.1. Optimization of one control parameter

In this experiment, we fixed all control parameters except for one.
We predicted the unknown value. This set of experiments does not
include the CMA-ES algorithm because its particular design does
not support single-parameter prediction. The results are shown in
Figure 2, for the different optimizers and PT control parameters.

Results demonstrate the effectiveness of GA and PSO in ac-
curately predicting the control parameters. No outliers were ob-
served in the genetic algorithm’s performance. The NM algorithm
successfully reached the absolute minimum for most parameters.
However, it struggled to achieve the same for the pitch and one
tongue-related parameter. A closer examination of these param-
eters revealed that their error functions contained multiple local
minima. Since the performance of the NM is heavily influenced
by its initial conditions, it makes it prone to getting stuck in them.

Despite not always arriving at the optimal values, TRF and NN
converge rapidly to the minimum. Once it is trained, NN takes less
than a second to reach the minima. TRF algorithm takes 5 seconds
on average, which is four times faster to optimize than PSO and
NM, and 100 times faster than GA.

In the same line, Figure 3 illustrates the error associated with
each audio representation. All audio representations are suitable
for optimizing individual control parameters. However, no error is
observed in the multiresolution. This makes sense, since it is an
extension of the STFT that better represents the spectral character-
istics of the signal.
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Figure 3: Audio representation performance over one control pa-
rameter. X-axis represents each audio representation. Y-axis rep-
resents the normalized error. Each bar is a control parameter.

4.1.2. All control parameters

The single-parameter experiments validate that articulatory param-
eters can be predicted from sound representations alone. However,
this scenario is too simplified to clarify which optimizer is more
accurate. This can be done by increasing the complexity of the
experiment, seeking to predict all control parameters at once. The
prediction results for each parameter are shown in Figure 4.

Experiments focusing on predicting all parameters demonstrate
the superior performance of GA, CMA-ES, and PSO compared
to other methods. In this experiment set, the eight-dimensional
search area makes the optimization more challenging. The TRF
and NM algorithms yielded unsatisfactory results, deeming them
unsuitable for tackling the problem. As the number of potential so-
lutions grows exponentially with increasing dimensions, only the
most robust methods can find an optimal solution. Genetic algo-
rithms and PSO can outperform least squares minimization or the
downhill simplex method because they are more robust in han-
dling complex search spaces, non-convex functions, and intricate
relationships between variables.

On the other hand, observing how the different audio repre-
sentations behave in this scenario is interesting. They are shown in
Figure 5. We can observe that no representation performs signif-
icantly better than the rest, not even the multiresolution represen-

Figure 4: Optimizer performance when all parameters are pre-
dicted at the same time. X-axis includes all optimizers. Y-axis
represents the normalized error. Each bar corresponds to an au-
dio representation.

Figure 5: Audio representation performance while predicting all
parameters at a time. X-axis covers the representations. Y-axis
represents the normalized error. Each bar corresponds to a control
parameter.

tation. However, finding a higher error is not necessarily a serious
problem when reconstructing the signal. Most control parameters
have local minima very close to the global minimum. This means
that different PT configurations can produce almost the same re-
construction. This does not apply to the pitch parameter, which is
one of the critical parameters in quality and, as can be seen, the
MFCCs do not make it easy to reach its minimum.

In fact, Figure 6 illustrates precisely these phenomena. It shows
the MAE of the original and reconstructed signal. It is observed
that regardless of the optimizer used when the search space is
large, the MFCCs do not achieve satisfactory results. Thus, this
experiment indicates that the best prediction of the control param-
eters can be made with GA or the PSO using the MEL scale or
Multiresolution spectrograms.

In addition, Figure 7 shows the computational costs of each
optimizer. It shows that the NN is the fastest once trained, while
PSO is the fastest of the suitable optimization techniques.

4.1.3. All control parameters which vary over time

The next level of complexity we tested was optimizing parameters
that varied over time. To achieve this, we created an interpolator
that generated intermediate values between two temporal spaces

Figure 6: Absolute performance of the optimizers and representa-
tions. X-axis includes all optimizers. Y-axis represents the MAE
of the target and reconstructed audio file. Each bar is the audio
representation.
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Figure 7: Computational cost for the different optimizers –in X-
axis. Y-axis represents the time to converge, in seconds.

Figure 8: Performance of optimizers and representations when the
signal varies over time. X-axis includes all audio optimizers. Y-
axis represents the normalized error between the target and recon-
structed audio. Each bar corresponds to an audio representation.

defined by two sets of articulatory parameters in the PT. As shown
in Figure 8, none of the optimizers were able to achieve a satisfac-
tory result when optimizing a time-variant set of parameters. The
only optimizer that achieved a result closer to zero was the GA, us-
ing the STFT. The tendency is that as more parameters are added to
optimize, the search space becomes more complex and therefore
very difficult to reach the absolute minimum. It is important to
note that this method is not suitable for a neural network. It would
be necessary to train new networks depending on the number of
parameters to be predicted.

To achieve a more satisfactory, general solution, it was decided
that the best strategy for optimizing signals that vary over time is
to segment the signal into small windows and optimize them as if
they were a static signals. We tested different window sizes and
found out a 100 milliseconds length performed optimally. These
windows can then be connected using a Savitzky-Golay filter [33],
which smooths out the result. The optimization results of these
tests suggest insights equivalent to predicting a non-variant set of
parameters. That is why this technique is the preferred choice for
optimizing sounds created by humans.

4.1.4. All control parameters in noise

In these experiments, different amounts of Gaussian white noise
were added to the original signal. We sought to predict the articu-

latory parameters that defined the signal. As shown in Figure 9, the
optimizers performance deteriorates as more noise is added. Ad-
ditionally, we observed that the optimizers do not start to exhibit
exponentially growing errors until the signal-to-noise ratio reaches
20 decibels. All optimizers act similarly, with the exception of the
NN, which does not tolerate noise at its input.

From these experiments, we can conclude that it is possible to
optimize signals that are not perfectly generated by a synthesizer
but may come from any source, such as a recording from a public
database. This finding is significant because it suggests that our
approach can be applied in real-world scenarios where the input
signals will likely not be perfectly recorded.

4.2. Optimization of real audio files

Results of the tests with real sounds can be seen in Table 2. The re-
sults for each perceptual metric are shown for the best-performing
combination of the optimizer-representation pair. The columns de-
tail the optimizers and the color shows the best audio representa-
tion for each case. We used different perceptual metrics to mea-
sure how similar the sounds generated by the synthesizer were to
human-generated ones. We also include how the perceptual met-
rics behaved when predicting PT samples. These set up a bench-
mark to compare the upper limit that could be reached. Still, we
encourage readers to visit our website, where we have published
these audio files, and evaluate the quality themselves.

As shown in the table, CMA-ES and GA achieved superior re-
sults compared to other optimizers in terms of perceptual similarity
in most of the cases. It is important to note that the MOS (Mean
Opinion Score) equivalent results can still be considered low com-
pared to the scale, as the sounds are synthesized by a certain vocal
tract that may not correspond to the vocal tracts of the people who
generated the original sound. Therefore, we do not claim that we
can produce an exactly identical sound but an equivalent one.

For all types of signal, we used the strategy of dividing the sig-
nal into small windows and smoothing them out into full-length
signals. Systematically, PT-generated sounds are predicted with
better scores than human-generated sounds. Furthermore, in many
of the cases we found that yawns are perceptually recognized as
more similar than sustained vowels. This is because the timbre in
the sustained vowel has a much greater influence than in the yawn.
The PT has vocal characteristics that do not match those of the

Figure 9: Performance of the optimizers when Gaussian White
Noise was applied at the input. X-axis includes allaudio optimiz-
ers. Y-axis represents the MAE between the target and the recon-
structed audio file. Each bar is a different Signal-to-Noise ration.
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Table 2: Perceptual equivalent metrics of the real sounds. Type "PT" stands for "Pink Trombone" generated, "VW" for sustained "Vowel",
and "Y" for "Yawn". All metrics are in MOS scale (from 1 to 5) except STOI (from 0 to 1). We used a color code to indicate the best-
performing set of acoustic parameters per audio type and optimizer.

GA PSO TRF NM CMA-ES NN Best Result Legend
PT 2.2± 0.9 2.1± 1.2 1.8± 1.0 2.2± 1.0 2.6± 0.9 1.8± 0.9 CMA-ES 2.6± 0.9 mel
VW 1.8± 0.8 1.5± 0.4 1.6± 0.6 1.8± 0.7 1.5± 0.5 1.8± 1.2 GA 1.8± 0.8 mfccPESQ
Y 1.5± 0.4 1.3± 0.3 1.4± 0.2 1.3± 0.1 1.3± 0.2 1.5± 0.7 GA 1.5± 0.4 multiscale
PT 3.0± 0.6 3.2± 0.8 2.6± 0.6 3.0± 0.9 3.5± 0.7 3.0± 0.8 CMA-ES 3.5± 0.7 stft
VW 2.8± 0.7 2.2± 0.1 2.6± 0.7 2.5± 0.7 2.5± 0.6 2.6± 0.7 GA 2.8± 0.7PEAQ
Y 2.5± 0.8 3.0± 1.1 2.7± 0.7 2.6± 0.7 2.7± 1.0 2.8± 1.0 PSO 3.0± 1.1
PT 3.1± 0.9 3.4± 0.8 1.7± 0.5 3.3± 1.2 4.3± 0.7 3.0± 0.6 CMA-ES 4.3± 0.7
VW 1.9± 0.5 2.0± 0.2 2± 0.3 1.9± 0.3 2.1± 0.4 1.8± 0.4 CMA-ES 2.1± 0.4ViSQOL
Y 2.1± 0.1 2.1± 0.1 2.3± 0.3 2.3± 0.4 2.1± 0.1 1.9± 0.2 TRF 2.3± 0.3
PT 0.3± 0.2 0.4± 0.3 0.1± 0.1 0.5± 0.4 0.5± 0.3 0.2± 0.1 CMA-ES 0.5± 0.3
VW 0.1± 0.1 0.1± 0.0 0.1± 0.0 0.1± 0.1 0.1± 0.0 0.1± 0.0 CMA-ES 0.1± 0.0STOI
Y 0.3± 0.1 0.3± 0.1 0.3± 0.1 0.3± 0.1 0.3± 0.1 0.1± 0.1 - 0.3± 0.1

person who recorded the sounds. For this reason, it is more dif-
ficult to recreate a perfectly harmonic voice like the vowel than a
noisy sound like the yawn. This does not imply that our optimizers
are malfunctioning, as the goal is to create comparable sounds, not
exactly the same. The STOI metric in this regard is very represen-
tative of this situation, giving the yawn almost equal score to the
PT-generated values, while the vowel is perceived as different.

These experiments also yield two interesting insights. First,
one may identify optimizer-representation combinations that per-
form better than others. In particular, multiscale representation
works well for yawns, while for sustained vowels STFT represen-
tation can do the job. None performed well using MFCC. Thus,
one may need to take into account the type of signal to get good
results from the optimizer. Second, there is consistency among the
perceptual metrics. Those experiments that are more challenging
consistently score worse than simpler ones.

5. CONCLUSION

Optimization techniques effectively predict the parameters of the
Pink Trombone to produce human-like vocalisations. The selected
algorithms delivered tuned control parameters while operating on
different acoustic features and metrics. The resulting audio sam-
ples match the selected input sounds regarding the absolute error
and perpetual equivalent metrics. A similar trend was observed
on sustained vowels and yawnings; as well as under additive noise
conditions. Nonetheless, the lower performance levels for the col-
lected audio samples compared to the synthetic inputs, in absolute
error and according to the perceptual-equivalent metrics, may be
influenced by the limited ability of the Pink Trombone to match
sounds out of its standard tract setting.

We comprehensively evaluated some of the most commonly
used optimization algorithms in a black-box approach, predict-
ing their control parameters to synthesize non-speech sounds. We
tested different audio representations and conducted experiments
in different scenarios, ranging from simple single-parameter pre-
dictions to complex, time-varying parameters or non-speech human-
made sounds. Our results show that the Evolution Strategies (GA
and CMA-ES) and Particle Swarm Optimization with multireso-
lution representation are the most effective for predicting control
parameters with minimum error (MAE < 1%) and high quality
(ViSQOL 4.3 for PT, PEAQ 3.0 for yawns). Also, PSO achieved
the best performance vs. computational cost ratio.

According to our results, GA and PSO algorithms were su-
perior to the other optimization methods in most cases. The NM
algorithm struggled with local minima, and the TRF algorithm, al-
though fast, could not optimize the parameters satisfactorily. The
NN could predict the control parameters when the input was a
sound generated by the PT. However, it failed when confronted
with real sounds or noisy inputs. NN strategy can be useful for
certain scenarios since it is also very fast once trained, but it can
hardly reach the generalization of the GA.

Regarding audio representations, our experiments demonstrate
that all those that we tested, including MFCC, STFT, MEL, and
multiresolution decomposition, are suitable for optimizing indi-
vidual control parameters. However, the MFCC representation
showed poorer pitch prediction capability than other representa-
tions. This is consistent with what is expected from a cepstral
representation according to the literature.

Perceptual metrics validate that the optimizers are able to faith-
fully predict audio samples generated by the synthesizer itself.
Taking this benchmark, we can observe that real sounds do not
reach such a high performance. The conclusion is that our syn-
thesizer cannot achieve certain characteristics of real voices in the
given conditions (e.g. vocal tract size). Nevertheless, comparable
sounds have been achieved, which is the goal of our research.

Future research should explore new techniques that enhance
the prediction of time-varying signals. Further analysis is needed
to investigate the parameter’s flow, whether it aligns with the typ-
ical structures of a human vocal tract or the chosen optimization
strategy. Additionally, hierarchical optimizations can improve the
neural network’s performance. Predictions should be conducted in
two stages by initially narrowing the bounds and then fine-tuning.

Finally, future work should use this framework to benchmark
other solutions to the problem, including alternative optimization
methods, acoustic features, metrics, and subjective tests.
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