Download Aliasing Reduction in Neural Amp Modeling by Smoothing Activations The increasing demand for high-quality digital emulations of analog audio hardware, such as vintage tube guitar amplifiers, led
to numerous works on neural network-based black-box modeling,
with deep learning architectures like WaveNet showing promising
results. However, a key limitation in all of these models was the
aliasing artifacts stemming from nonlinear activation functions in
neural networks. In this paper, we investigated novel and modified activation functions aimed at mitigating aliasing within neural
amplifier models. Supporting this, we introduced a novel metric,
the Aliasing-to-Signal Ratio (ASR), which quantitatively assesses
the level of aliasing with high accuracy. Measuring also the conventional Error-to-Signal Ratio (ESR), we conducted studies on a
range of preexisting and modern activation functions with varying
stretch factors. Our findings confirmed that activation functions
with smoother curves tend to achieve lower ASR values, indicating a noticeable reduction in aliasing. Notably, this improvement
in aliasing reduction was achievable without a substantial increase
in ESR, demonstrating the potential for high modeling accuracy
with reduced aliasing in neural amp models.
Download Inference-Time Structured Pruning for Real-Time Neural Network Audio Effects Structured pruning is a technique for reducing the computational
load and memory footprint of neural networks by removing structured subsets of parameters according to a predefined schedule
or ranking criterion.
This paper investigates the application of
structured pruning to real-time neural network audio effects, focusing on both feedforward networks and recurrent architectures.
We evaluate multiple pruning strategies at inference time, without retraining, and analyze their effects on model performance. To
quantify the trade-off between parameter count and audio fidelity,
we construct a theoretical model of the approximation error as a
function of network architecture and pruning level. The resulting bounds establish a principled relationship between pruninginduced sparsity and functional error, enabling informed deployment of neural audio effects in constrained real-time environments.
Download Training Neural Models of Nonlinear Multi-Port Elements Within Wave Digital Structures Through Discrete-Time Simulation Neural networks have been applied within the Wave Digital Filter
(WDF) framework as data-driven models for nonlinear multi-port
circuit elements. Conventionally, these models are trained on wave
variables obtained by sampling the current-voltage characteristic
of the considered nonlinear element before being incorporated into
the circuit WDF implementation. However, isolating multi-port
elements for this process can be challenging, as their nonlinear
behavior often depends on dynamic effects that emerge from interactions with the surrounding circuit. In this paper, we propose a
novel approach for training neural models of nonlinear multi-port
elements directly within a circuit’s Wave Digital (WD) discretetime implementation, relying solely on circuit input-output voltage
measurements. Exploiting the differentiability of WD simulations,
we embed the neural network into the simulation process and optimize its parameters using gradient-based methods by minimizing
a loss function defined over the circuit output voltage. Experimental results demonstrate the effectiveness of the proposed approach
in accurately capturing the nonlinear circuit behavior, while preserving the interpretability and modularity of WDFs.
Download Antiderivative Antialiasing for Recurrent Neural Networks Neural networks have become invaluable for general audio processing tasks, such as virtual analog modeling of nonlinear audio equipment.
For sequence modeling tasks in particular, recurrent neural networks (RNNs) have gained widespread adoption in recent years. Their general applicability and effectiveness
stems partly from their inherent nonlinearity, which makes them
prone to aliasing. Recent work has explored mitigating aliasing
by oversampling the network—an approach whose effectiveness is
directly linked with the incurred computational costs. This work
explores an alternative route by extending the antiderivative antialiasing technique to explicit, computable RNNs. Detailed applications to the Gated Recurrent Unit and Long Short-Term Memory cell are shown as case studies. The proposed technique is evaluated
on multiple pre-trained guitar amplifier models, assessing its impact on the amount of aliasing and model tonality. The method is
shown to reduce the models’ tendency to alias considerably across
all considered sample rates while only affecting their tonality moderately, without requiring high oversampling factors. The results
of this study can be used to improve sound quality in neural audio
processing tasks that employ a suitable class of RNNs. Additional
materials are provided in the accompanying webpage.
Download Neural Sample-Based Piano Synthesis Piano sound emulation has been an active topic of research and development for several decades. Although comprehensive physicsbased piano models have been proposed, sample-based piano emulation is still widely utilized for its computational efficiency and
relative accuracy despite presenting significant memory storage
requirements. This paper proposes a novel hybrid approach to
sample-based piano synthesis aimed at improving the fidelity of
sound emulation while reducing memory requirements for storing samples. A neural network-based model processes the sound
recorded from a single example of piano key at a given velocity.
The network is trained to learn the nonlinear relationship between
the various velocities at which a piano key is pressed and the corresponding sound alterations. Results show that the method achieves
high accuracy using a specific neural architecture that is computationally efficient, presenting few trainable parameters, and it requires memory only for one sample for each piano key.
Download Learning Nonlinear Dynamics in Physical Modelling Synthesis Using Neural Ordinary Differential Equations Modal synthesis methods are a long-standing approach for modelling distributed musical systems. In some cases extensions are
possible in order to handle geometric nonlinearities. One such
case is the high-amplitude vibration of a string, where geometric nonlinear effects lead to perceptually important effects including pitch glides and a dependence of brightness on striking amplitude. A modal decomposition leads to a coupled nonlinear system of ordinary differential equations. Recent work in applied machine learning approaches (in particular neural ordinary differential equations) has been used to model lumped dynamic systems
such as electronic circuits automatically from data. In this work,
we examine how modal decomposition can be combined with neural ordinary differential equations for modelling distributed musical systems. The proposed model leverages the analytical solution
for linear vibration of system’s modes and employs a neural network to account for nonlinear dynamic behaviour. Physical parameters of a system remain easily accessible after the training without
the need for a parameter encoder in the network architecture. As
an initial proof of concept, we generate synthetic data for a nonlinear transverse string and show that the model can be trained to
reproduce the nonlinear dynamics of the system. Sound examples
are presented.
Download Automatic Classification of Chains of Guitar Effects Through Evolutionary Neural Architecture Search Recent studies on classifying electric guitar effects have achieved
high accuracy, particularly with deep learning techniques. However, these studies often rely on simplified datasets consisting
mainly of single notes rather than realistic guitar recordings.
Moreover, in the specific field of effect chain estimation, the literature tends to rely on large models, making them impractical for
real-time or resource-constrained applications. In this work, we
recorded realistic guitar performances using four different guitars
and created three datasets by applying a chain of five effects with
increasing complexity: (1) fixed order and parameters, (2) fixed order with randomly sampled parameters, and (3) random order and
parameters. We also propose a novel Neural Architecture Search
method aimed at discovering accurate yet compact convolutional
neural network models to reduce power and memory consumption.
We compared its performance to a basic random search strategy,
showing that our custom Neural Architecture Search outperformed
random search in identifying models that balance accuracy and
complexity. We found that the number of convolutional and pooling layers becomes increasingly important as dataset complexity
grows, while dense layers have less impact. Additionally, among
the effects, tremolo was identified as the most challenging to classify.
Download Towards Neural Emulation of Voltage-Controlled Oscillators Machine learning models have become ubiquitous in modeling
analog audio devices. Expanding on this line of research, our study
focuses on Voltage-Controlled Oscillators of analog synthesizers.
We employ black box autoregressive artificial neural networks to
model the typical analog waveshapes, including triangle, square,
and sawtooth. The models can be conditioned on wave frequency
and type, enabling the generation of pitch envelopes and morphing across waveshapes. We conduct evaluations on both synthetic
and analog datasets to assess the accuracy of various architectural
variants. The LSTM variant performed better, although lower frequency ranges present particular challenges.
Download Neural-Driven Multi-Band Processing for Automatic Equalization and Style Transfer We present a Neural-Driven Multi-Band Processor (NDMP), a differentiable audio processing framework that augments a static sixband Parametric Equalizer (PEQ) with per-band dynamic range
compression. We optimize this processor using neural inference
for two tasks: Automatic Equalization (AutoEQ), which estimates
tonal and dynamic corrections without a reference, and Production
Style Transfer (NDMP-ST), which adapts the processing of an input signal to match the tonal and dynamic characteristics of a reference. We train NDMP using a self-supervised strategy, where the
model learns to recover a clean signal from inputs degraded with
randomly sampled NDMP parameters and gain adjustments. This
setup eliminates the need for paired input–target data and enables
end-to-end training with audio-domain loss functions. In the inference, AutoEQ enhances previously unseen inputs in a blind setting, while NDMP-ST performs style transfer by predicting taskspecific processing parameters. We evaluate our approach on the
MUSDB18 dataset using both objective metrics (e.g., SI-SDR,
PESQ, STFT loss) and a listening test.
Our results show that
NDMP consistently outperforms traditional PEQ and a PEQ+DRC
(single-band) baseline, offering a robust neural framework for audio enhancement that combines learned spectral and dynamic control.
Download Generative Latent Spaces for Neural Synthesis of Audio Textures This paper investigates the synthesis of audio textures and the
structure of generative latent spaces using Variational Autoencoders (VAEs) within two paradigms of neural audio synthesis:
DSP-inspired and data-driven approaches. For each paradigm, we
propose VAE-based frameworks that allow fine-grained temporal
control. We introduce datasets across three categories of environmental sounds to support our investigations. We evaluate and compare the models’ reconstruction performance using objective metrics, and investigate their generative capabilities and latent space
structure through latent space interpolations.