Download Differentiable White-Box Virtual Analog Modeling
Component-wise circuit modeling, also known as “white-box” modeling, is a well established and much discussed technique in virtual analog modeling. This approach is generally limited in accuracy by lack of access to the exact component values present in a real example of the circuit. In this paper we show how this problem can be addressed by implementing the white-box model in a differentiable form, and allowing approximate component values to be learned from raw input–output audio measured from a real device.
Download Identification of Nonlinear Circuits as Port-Hamiltonian Systems
This paper addresses identification of nonlinear circuits for power-balanced virtual analog modeling and simulation. The proposed method combines a port-Hamiltonian system formulation with kernel-based methods to retrieve model laws from measurements. This combination allows for the estimated model to retain physical properties that are crucial for the accuracy of simulations, while representing a variety of nonlinear behaviors. As an illustration, the method is used to identify a nonlinear passive peaking EQ.
Download Exposure Bias and State Matching in Recurrent Neural Network Virtual Analog Models
Virtual analog (VA) modeling using neural networks (NNs) has great potential for rapidly producing high-fidelity models. Recurrent neural networks (RNNs) are especially appealing for VA due to their connection with discrete nodal analysis. Furthermore, VA models based on NNs can be trained efficiently by directly exposing them to the circuit states in a gray-box fashion. However, exposure to ground truth information during training can leave the models susceptible to error accumulation in a free-running mode, also known as “exposure bias” in machine learning literature. This paper presents a unified framework for treating the previously proposed state trajectory network (STN) and gated recurrent unit (GRU) networks as special cases of discrete nodal analysis. We propose a novel circuit state-matching mechanism for the GRU and experimentally compare the previously mentioned networks for their performance in state matching, during training, and in exposure bias, during inference. Experimental results from modeling a diode clipper show that all the tested models exhibit some exposure bias, which can be mitigated by truncated backpropagation through time. Furthermore, the proposed state matching mechanism improves the GRU modeling performance of an overdrive pedal and a phaser pedal, especially in the presence of external modulation, apparent in a phaser circuit.
Download Amp-Space: A Large-Scale Dataset for Fine-Grained Timbre Transformation
We release Amp-Space, a large-scale dataset of paired audio samples: a source audio signal, and an output signal, the result of a timbre transformation. The types of transformations we study are from blackbox musical tools (amplifiers, stompboxes, studio effects) traditionally used to shape the sound of guitar, bass, or synthesizer sounds. For each sample of transformed audio, the set of parameters used to create it are given. Samples are from both real and simulated devices, the latter allowing for orders of magnitude greater data than found in comparable datasets. We demonstrate potential use cases of this data by (a) pre-training a conditional WaveNet model on synthetic data and show that it reduces the number of samples necessary to digitally reproduce a real musical device, and (b) training a variational autoencoder to shape a continuous space of timbre transformations for creating new sounds through interpolation.
Download Transition-Aware: A More Robust Approach for Piano Transcription
Piano transcription is a classic problem in music information retrieval. More and more transcription methods based on deep learning have been proposed in recent years. In 2019, Google Brain published a larger piano transcription dataset, MAESTRO. On this dataset, Onsets and Frames transcription approach proposed by Hawthorne achieved a stunning onset F1 score of 94.73%. Unlike the annotation method of Onsets and Frames, Transition-aware model presented in this paper annotates the attack process of piano signals called atack transition in multiple frames, instead of only marking the onset frame. In this way, the piano signals around onset time are taken into account, enabling the detection of piano onset more stable and robust. Transition-aware achieves a higher transcription F1 score than Onsets and Frames on MAESTRO dataset and MAPS dataset, reducing many extra note detection errors. This indicates that Transition-aware approach has better generalization ability on different datasets.
Download Improving Synthesizer Programming From Variational Autoencoders Latent Space
Deep neural networks have been recently applied to the task of automatic synthesizer programming, i.e., finding optimal values of sound synthesis parameters in order to reproduce a given input sound. This paper focuses on generative models, which can infer parameters as well as generate new sets of parameters or perform smooth morphing effects between sounds. We introduce new models to ensure scalability and to increase performance by using heterogeneous representations of parameters as numerical and categorical random variables. Moreover, a spectral variational autoencoder architecture with multi-channel input is proposed in order to improve inference of parameters related to the pitch and intensity of input sounds. Model performance was evaluated according to several criteria such as parameters estimation error and audio reconstruction accuracy. Training and evaluation were performed using a 30k presets dataset which is published with this paper. They demonstrate significant improvements in terms of parameter inference and audio accuracy and show that presented models can be used with subsets or full sets of synthesizer parameters.
Download An Audio-Visual Fusion Piano Transcription Approach Based on Strategy
Piano transcription is a fundamental problem in the field of music information retrieval. At present, a large number of transcriptional studies are mainly based on audio or video, yet there is a small number of discussion based on audio-visual fusion. In this paper, a piano transcription model based on strategy fusion is proposed, in which the transcription results of the video model are used to assist audio transcription. Due to the lack of datasets currently used for audio-visual fusion, the OMAPS data set is proposed in this paper. Meanwhile, our strategy fusion model achieves a 92.07% F1 score on OMAPS dataset. The transcription model based on feature fusion is also compared with the one based on strategy fusion. The experiment results show that the transcription model based on strategy fusion achieves better results than the one based on feature fusion.
Download One Billion Audio Sounds From Gpu-Enabled Modular Synthesis
We release synth1B1, a multi-modal audio corpus consisting of 1 billion 4-second synthesized sounds, paired with the synthesis parameters used to generate them. The dataset is 100x larger than any audio dataset in the literature. We also introduce torchsynth, an open source modular synthesizer that generates the synth1B1 samples on-the-fly at 16200x faster than real-time (714MHz) on a single GPU. Finally, we release two new audio datasets: FM synth timbre and subtractive synth pitch. Using these datasets, we demonstrate new rank-based evaluation criteria for existing audio representations. Finally, we propose a novel approach to synthesizer hyperparameter optimization.
Download A Generative Model for Raw Audio Using Transformer Architectures
This paper proposes a novel way of doing audio synthesis at the waveform level using Transformer architectures. We propose a deep neural network for generating waveforms, similar to wavenet . This is fully probabilistic, auto-regressive, and causal, i.e. each sample generated depends on only the previously observed samples. Our approach outperforms a widely used wavenet architecture by up to 9% on a similar dataset for predicting the next step. Using the attention mechanism, we enable the architecture to learn which audio samples are important for the prediction of the future sample. We show how causal transformer generative models can be used for raw waveform synthesis. We also show that this performance can be improved by another 2% by conditioning samples over a wider context. The flexibility of the current model to synthesize audio from latent representations suggests a large number of potential applications. The novel approach of using generative transformer architectures for raw audio synthesis is, however, still far away from generating any meaningful music similar to wavenet, without using latent codes/meta-data to aid the generation process.
Download Adaptive Pitch-Shifting With Applications to Intonation Adjustment in a Cappella Recordings
A central challenge for a cappella singers is to adjust their intonation and to stay in tune relative to their fellow singers. During editing of a cappella recordings, one may want to adjust local intonation of individual singers or account for global intonation drifts over time. This requires applying a time-varying pitch-shift to the audio recording, which we refer to as adaptive pitch-shifting. In this context, existing (semi-)automatic approaches are either laborintensive or face technical and musical limitations. In this work, we present automatic methods and tools for adaptive pitch-shifting with applications to intonation adjustment in a cappella recordings. To this end, we show how to incorporate time-varying information into existing pitch-shifting algorithms that are based on resampling and time-scale modification (TSM). Furthermore, we release an open-source Python toolbox, which includes a variety of TSM algorithms and an implementation of our method. Finally, we show the potential of our tools by two case studies on global and local intonation adjustment in a cappella recordings using a publicly available multitrack dataset of amateur choral singing.