Download Aliasing Reduction in Neural Amp Modeling by Smoothing Activations The increasing demand for high-quality digital emulations of analog audio hardware, such as vintage tube guitar amplifiers, led
to numerous works on neural network-based black-box modeling,
with deep learning architectures like WaveNet showing promising
results. However, a key limitation in all of these models was the
aliasing artifacts stemming from nonlinear activation functions in
neural networks. In this paper, we investigated novel and modified activation functions aimed at mitigating aliasing within neural
amplifier models. Supporting this, we introduced a novel metric,
the Aliasing-to-Signal Ratio (ASR), which quantitatively assesses
the level of aliasing with high accuracy. Measuring also the conventional Error-to-Signal Ratio (ESR), we conducted studies on a
range of preexisting and modern activation functions with varying
stretch factors. Our findings confirmed that activation functions
with smoother curves tend to achieve lower ASR values, indicating a noticeable reduction in aliasing. Notably, this improvement
in aliasing reduction was achievable without a substantial increase
in ESR, demonstrating the potential for high modeling accuracy
with reduced aliasing in neural amp models.
Download MorphDrive: Latent Conditioning for Cross-Circuit Effect Modeling and a Parametric Audio Dataset of Analog Overdrive Pedals In this paper, we present an approach to the neural modeling of
overdrive guitar pedals with conditioning from a cross-circuit and
cross-setting latent space. The resulting network models the behavior of multiple overdrive pedals across different settings, offering continuous morphing between real configurations and hybrid
behaviors. Compact conditioning spaces are obtained through unsupervised training of a variational autoencoder with adversarial
training, resulting in accurate reconstruction performance across
different sets of pedals. We then compare three Hyper-Recurrent
architectures for processing, including dynamic and static HyperRNNs, and a smaller model for real-time processing. Additionally,
we present pOD-set, a new open dataset including recordings of
27 analog overdrive pedals, each with 36 gain and tone parameter combinations totaling over 97 hours of recordings. Precise parameter setting was achieved through a custom-deployed recording
robot.
Download Antialiased Black-Box Modeling of Audio Distortion Circuits Using Real Linear Recurrent Units In this paper, we propose the use of real-valued Linear Recurrent
Units (LRUs) for black-box modeling of audio circuits. A network architecture composed of real LRU blocks interleaved with
nonlinear processing stages is proposed.
Two case studies are
presented, a second-order diode clipper and an overdrive distortion pedal. Furthermore, we show how to integrate the antiderivative antialiaisng technique into the proposed method, effectively
lowering oversampling requirements. Our experiments show that
the proposed method generates models that accurately capture the
nonlinear dynamics of the examined devices and are highly efficient, which makes them suitable for real-time operation inside
Digital Audio Workstations.
Download Anti-Aliasing of Neural Distortion Effects via Model Fine Tuning Neural networks have become ubiquitous with guitar distortion
effects modelling in recent years. Despite their ability to yield
perceptually convincing models, they are susceptible to frequency
aliasing when driven by high frequency and high gain inputs.
Nonlinear activation functions create both the desired harmonic
distortion and unwanted aliasing distortion as the bandwidth of
the signal is expanded beyond the Nyquist frequency. Here, we
present a method for reducing aliasing in neural models via a
teacher-student fine tuning approach, where the teacher is a pretrained model with its weights frozen, and the student is a copy of
this with learnable parameters. The student is fine-tuned against
an aliasing-free dataset generated by passing sinusoids through
the original model and removing non-harmonic components from
the output spectra.
Our results show that this method significantly suppresses aliasing for both long-short-term-memory networks (LSTM) and temporal convolutional networks (TCN). In the
majority of our case studies, the reduction in aliasing was greater
than that achieved by two times oversampling. One side-effect
of the proposed method is that harmonic distortion components
are also affected.
This adverse effect was found to be modeldependent, with the LSTM models giving the best balance between
anti-aliasing and preserving the perceived similarity to an analog
reference device.
Download Real-Time Virtual Analog Modelling of Diode-Based VCAs Some early analog voltage-controlled amplifiers (VCAs) utilized
semiconductor diodes as a variable-gain element. Diode-based
VCAs exhibit a unique sound quality, with distortion dependent
both on signal level and gain control. In this work, we examine the
behavior of a simplified circuit for a diode-based VCA and propose
a nonlinear, explicit, stateless digital model. This approach avoids
traditional iterative algorithms, which can be computationally intensive. The resulting digital model retains the sonic characteristics
of the analog model and is suitable for real-time simulation. We
present an analysis of the gain characteristics and harmonic distortion produced by this model, as well as practical guidance for
implementation. We apply this approach to a set of alternative
analog topologies and introduce a family of digital VCA models
based on fixed nonlinearities with variable operating points.
Download Unsupervised Estimation of Nonlinear Audio Effects: Comparing Diffusion-Based and Adversarial Approaches Accurately estimating nonlinear audio effects without access to
paired input-output signals remains a challenging problem. This
work studies unsupervised probabilistic approaches for solving this
task. We introduce a method, novel for this application, based
on diffusion generative models for blind system identification, enabling the estimation of unknown nonlinear effects using blackand gray-box models. This study compares this method with a
previously proposed adversarial approach, analyzing the performance of both methods under different parameterizations of the
effect operator and varying lengths of available effected recordings. Through experiments on guitar distortion effects, we show
that the diffusion-based approach provides more stable results and
is less sensitive to data availability, while the adversarial approach
is superior at estimating more pronounced distortion effects. Our
findings contribute to the robust unsupervised blind estimation of
audio effects, demonstrating the potential of diffusion models for
system identification in music technology.
Download Impedance Synthesis for Hybrid Analog-Digital Audio Effects Most real systems, from acoustics to analog electronics, are
characterised by bidirectional coupling amongst elements rather
than neat, unidirectional signal flows between self-contained modules. Integrating digital processing into physical domains becomes
a significant engineering challenge when the application requires
bidirectional coupling across the physical-digital boundary rather
than separate, well-defined inputs and outputs. We introduce an
approach to hybrid analog-digital audio processing using synthetic
impedance: digitally simulated circuit elements integrated into an
otherwise analog circuit. This approach combines the physicality and classic character of analog audio circuits alongside the
precision and flexibility of digital signal processing (DSP). Our
impedance synthesis system consists of a voltage-controlled current source and a microcontroller-based DSP system. We demonstrate our technique through modifying an iconic guitar distortion pedal, the Boss DS-1, showing the ability of the synthetic
impedance to both replicate and extend the behaviour of the pedal’s
diode clipping stage. We discuss the behaviour of the synthetic
impedance in isolated laboratory conditions and in the DS-1 pedal,
highlighting the technical and creative potential of the technique as
well as its practical limitations and future extensions.
Download Towards Efficient Emulation of Nonlinear Analog Circuits for Audio Using Constraint Stabilization and Convex Quadratic Programming This paper introduces a computationally efficient method for
the emulation of nonlinear analog audio circuits by combining state-space representations, constraint stabilization, and convex quadratic programming (QP). Unlike traditional virtual analog (VA) modeling approaches or computationally demanding
SPICE-based simulations, our approach reformulates the nonlinear
differential-algebraic (DAE) systems that arise from analog circuit
analysis into numerically stable optimization problems. The proposed method efficiently addresses the numerical challenges posed
by nonlinear algebraic constraints via constraint stabilization techniques, significantly enhancing robustness and stability, suitable
for real-time simulations. A canonical diode clipper circuit is presented as a test case, demonstrating that our method achieves accurate and faster emulations compared to conventional state-space
methods. Furthermore, our method performs very well even at
substantially lower sampling rates. Preliminary numerical experiments confirm that the proposed approach offers improved numerical stability and real-time feasibility, positioning it as a practical
solution for high-fidelity audio applications.
Download Digital Morphophone Environment. Computer Rendering of a Pioneering Sound Processing Device This paper introduces a digital reconstruction of the morphophone,
a complex magnetophonic device developed in the 1950s within
the laboratories of the GRM (Groupe de Recherches Musicales)
in Paris. The analysis, design, and implementation methodologies
underlying the Digital Morphophone Environment are discussed.
Based on a detailed review of historical sources and limited
documentation – including a small body of literature and, most
notably, archival images – the core operational principles of the
morphophone have been modeled within the MAX visual programming environment. The main goals of this work are, on the one
hand, to study and make accessible a now obsolete and unavailable
tool, and on the other, to provide the opportunity for new explorations in computer music and research.
Download Training Neural Models of Nonlinear Multi-Port Elements Within Wave Digital Structures Through Discrete-Time Simulation Neural networks have been applied within the Wave Digital Filter
(WDF) framework as data-driven models for nonlinear multi-port
circuit elements. Conventionally, these models are trained on wave
variables obtained by sampling the current-voltage characteristic
of the considered nonlinear element before being incorporated into
the circuit WDF implementation. However, isolating multi-port
elements for this process can be challenging, as their nonlinear
behavior often depends on dynamic effects that emerge from interactions with the surrounding circuit. In this paper, we propose a
novel approach for training neural models of nonlinear multi-port
elements directly within a circuit’s Wave Digital (WD) discretetime implementation, relying solely on circuit input-output voltage
measurements. Exploiting the differentiability of WD simulations,
we embed the neural network into the simulation process and optimize its parameters using gradient-based methods by minimizing
a loss function defined over the circuit output voltage. Experimental results demonstrate the effectiveness of the proposed approach
in accurately capturing the nonlinear circuit behavior, while preserving the interpretability and modularity of WDFs.