Download Aliasing Reduction in Neural Amp Modeling by Smoothing Activations
The increasing demand for high-quality digital emulations of analog audio hardware, such as vintage tube guitar amplifiers, led to numerous works on neural network-based black-box modeling, with deep learning architectures like WaveNet showing promising results. However, a key limitation in all of these models was the aliasing artifacts stemming from nonlinear activation functions in neural networks. In this paper, we investigated novel and modified activation functions aimed at mitigating aliasing within neural amplifier models. Supporting this, we introduced a novel metric, the Aliasing-to-Signal Ratio (ASR), which quantitatively assesses the level of aliasing with high accuracy. Measuring also the conventional Error-to-Signal Ratio (ESR), we conducted studies on a range of preexisting and modern activation functions with varying stretch factors. Our findings confirmed that activation functions with smoother curves tend to achieve lower ASR values, indicating a noticeable reduction in aliasing. Notably, this improvement in aliasing reduction was achievable without a substantial increase in ESR, demonstrating the potential for high modeling accuracy with reduced aliasing in neural amp models.
Download MorphDrive: Latent Conditioning for Cross-Circuit Effect Modeling and a Parametric Audio Dataset of Analog Overdrive Pedals
In this paper, we present an approach to the neural modeling of overdrive guitar pedals with conditioning from a cross-circuit and cross-setting latent space. The resulting network models the behavior of multiple overdrive pedals across different settings, offering continuous morphing between real configurations and hybrid behaviors. Compact conditioning spaces are obtained through unsupervised training of a variational autoencoder with adversarial training, resulting in accurate reconstruction performance across different sets of pedals. We then compare three Hyper-Recurrent architectures for processing, including dynamic and static HyperRNNs, and a smaller model for real-time processing. Additionally, we present pOD-set, a new open dataset including recordings of 27 analog overdrive pedals, each with 36 gain and tone parameter combinations totaling over 97 hours of recordings. Precise parameter setting was achieved through a custom-deployed recording robot.
Download Antialiased Black-Box Modeling of Audio Distortion Circuits Using Real Linear Recurrent Units
In this paper, we propose the use of real-valued Linear Recurrent Units (LRUs) for black-box modeling of audio circuits. A network architecture composed of real LRU blocks interleaved with nonlinear processing stages is proposed. Two case studies are presented, a second-order diode clipper and an overdrive distortion pedal. Furthermore, we show how to integrate the antiderivative antialiaisng technique into the proposed method, effectively lowering oversampling requirements. Our experiments show that the proposed method generates models that accurately capture the nonlinear dynamics of the examined devices and are highly efficient, which makes them suitable for real-time operation inside Digital Audio Workstations.
Download Anti-Aliasing of Neural Distortion Effects via Model Fine Tuning
Neural networks have become ubiquitous with guitar distortion effects modelling in recent years. Despite their ability to yield perceptually convincing models, they are susceptible to frequency aliasing when driven by high frequency and high gain inputs. Nonlinear activation functions create both the desired harmonic distortion and unwanted aliasing distortion as the bandwidth of the signal is expanded beyond the Nyquist frequency. Here, we present a method for reducing aliasing in neural models via a teacher-student fine tuning approach, where the teacher is a pretrained model with its weights frozen, and the student is a copy of this with learnable parameters. The student is fine-tuned against an aliasing-free dataset generated by passing sinusoids through the original model and removing non-harmonic components from the output spectra. Our results show that this method significantly suppresses aliasing for both long-short-term-memory networks (LSTM) and temporal convolutional networks (TCN). In the majority of our case studies, the reduction in aliasing was greater than that achieved by two times oversampling. One side-effect of the proposed method is that harmonic distortion components are also affected. This adverse effect was found to be modeldependent, with the LSTM models giving the best balance between anti-aliasing and preserving the perceived similarity to an analog reference device.
Download Real-Time Virtual Analog Modelling of Diode-Based VCAs
Some early analog voltage-controlled amplifiers (VCAs) utilized semiconductor diodes as a variable-gain element. Diode-based VCAs exhibit a unique sound quality, with distortion dependent both on signal level and gain control. In this work, we examine the behavior of a simplified circuit for a diode-based VCA and propose a nonlinear, explicit, stateless digital model. This approach avoids traditional iterative algorithms, which can be computationally intensive. The resulting digital model retains the sonic characteristics of the analog model and is suitable for real-time simulation. We present an analysis of the gain characteristics and harmonic distortion produced by this model, as well as practical guidance for implementation. We apply this approach to a set of alternative analog topologies and introduce a family of digital VCA models based on fixed nonlinearities with variable operating points.
Download Unsupervised Estimation of Nonlinear Audio Effects: Comparing Diffusion-Based and Adversarial Approaches
Accurately estimating nonlinear audio effects without access to paired input-output signals remains a challenging problem. This work studies unsupervised probabilistic approaches for solving this task. We introduce a method, novel for this application, based on diffusion generative models for blind system identification, enabling the estimation of unknown nonlinear effects using blackand gray-box models. This study compares this method with a previously proposed adversarial approach, analyzing the performance of both methods under different parameterizations of the effect operator and varying lengths of available effected recordings. Through experiments on guitar distortion effects, we show that the diffusion-based approach provides more stable results and is less sensitive to data availability, while the adversarial approach is superior at estimating more pronounced distortion effects. Our findings contribute to the robust unsupervised blind estimation of audio effects, demonstrating the potential of diffusion models for system identification in music technology.
Download Impedance Synthesis for Hybrid Analog-Digital Audio Effects
Most real systems, from acoustics to analog electronics, are characterised by bidirectional coupling amongst elements rather than neat, unidirectional signal flows between self-contained modules. Integrating digital processing into physical domains becomes a significant engineering challenge when the application requires bidirectional coupling across the physical-digital boundary rather than separate, well-defined inputs and outputs. We introduce an approach to hybrid analog-digital audio processing using synthetic impedance: digitally simulated circuit elements integrated into an otherwise analog circuit. This approach combines the physicality and classic character of analog audio circuits alongside the precision and flexibility of digital signal processing (DSP). Our impedance synthesis system consists of a voltage-controlled current source and a microcontroller-based DSP system. We demonstrate our technique through modifying an iconic guitar distortion pedal, the Boss DS-1, showing the ability of the synthetic impedance to both replicate and extend the behaviour of the pedal’s diode clipping stage. We discuss the behaviour of the synthetic impedance in isolated laboratory conditions and in the DS-1 pedal, highlighting the technical and creative potential of the technique as well as its practical limitations and future extensions.
Download Towards Efficient Emulation of Nonlinear Analog Circuits for Audio Using Constraint Stabilization and Convex Quadratic Programming
This paper introduces a computationally efficient method for the emulation of nonlinear analog audio circuits by combining state-space representations, constraint stabilization, and convex quadratic programming (QP). Unlike traditional virtual analog (VA) modeling approaches or computationally demanding SPICE-based simulations, our approach reformulates the nonlinear differential-algebraic (DAE) systems that arise from analog circuit analysis into numerically stable optimization problems. The proposed method efficiently addresses the numerical challenges posed by nonlinear algebraic constraints via constraint stabilization techniques, significantly enhancing robustness and stability, suitable for real-time simulations. A canonical diode clipper circuit is presented as a test case, demonstrating that our method achieves accurate and faster emulations compared to conventional state-space methods. Furthermore, our method performs very well even at substantially lower sampling rates. Preliminary numerical experiments confirm that the proposed approach offers improved numerical stability and real-time feasibility, positioning it as a practical solution for high-fidelity audio applications.
Download Digital Morphophone Environment. Computer Rendering of a Pioneering Sound Processing Device
This paper introduces a digital reconstruction of the morphophone, a complex magnetophonic device developed in the 1950s within the laboratories of the GRM (Groupe de Recherches Musicales) in Paris. The analysis, design, and implementation methodologies underlying the Digital Morphophone Environment are discussed. Based on a detailed review of historical sources and limited documentation – including a small body of literature and, most notably, archival images – the core operational principles of the morphophone have been modeled within the MAX visual programming environment. The main goals of this work are, on the one hand, to study and make accessible a now obsolete and unavailable tool, and on the other, to provide the opportunity for new explorations in computer music and research.
Download Training Neural Models of Nonlinear Multi-Port Elements Within Wave Digital Structures Through Discrete-Time Simulation
Neural networks have been applied within the Wave Digital Filter (WDF) framework as data-driven models for nonlinear multi-port circuit elements. Conventionally, these models are trained on wave variables obtained by sampling the current-voltage characteristic of the considered nonlinear element before being incorporated into the circuit WDF implementation. However, isolating multi-port elements for this process can be challenging, as their nonlinear behavior often depends on dynamic effects that emerge from interactions with the surrounding circuit. In this paper, we propose a novel approach for training neural models of nonlinear multi-port elements directly within a circuit’s Wave Digital (WD) discretetime implementation, relying solely on circuit input-output voltage measurements. Exploiting the differentiability of WD simulations, we embed the neural network into the simulation process and optimize its parameters using gradient-based methods by minimizing a loss function defined over the circuit output voltage. Experimental results demonstrate the effectiveness of the proposed approach in accurately capturing the nonlinear circuit behavior, while preserving the interpretability and modularity of WDFs.