Download Neural Net Tube Models for Wave Digital Filters
Herein, we demonstrate the use of neural nets towards simulating multiport nonlinearities inside a wave digital filter. We introduce a resolved wave definition which allows us to extract features from a Kirchhoff domain dataset and train our neural networks directly in the wave domain. A hyperparameter search is performed to minimize error and runtime complexity. To illustrate the method, we model a tube amplifier circuit inspired by the preamplifier stage of the Fender Pro-Junior guitar amplifier. We analyze the performance of our neural nets models by comparing their distortion characteristics and transconductances. Our results suggest that activation function selection has a significant effect on the distortion characteristic created by the neural net.
Download Deep Learning Conditioned Modeling of Optical Compression
Deep learning models applied to raw audio are rapidly gaining relevance in modeling audio analog devices. This paper investigates the use of different deep architectures for modeling audio optical compression. The models use as input and produce as output raw audio samples at audio rate, and it works with noor small-input buffers allowing a theoretical real-time and lowlatency implementation. In this study, two compressor parameters, the ratio, and threshold have been included in the modeling process aiming to condition the inference of the trained network. Deep learning architectures are compared to model an all-tube optical mono compressor including feed-forward, recurrent, and encoder-decoder models. The results of this study show that feedforward and long short-term memory architectures present limitations in modeling the triggering phase of the compressor, performing well only on the sustained phase. On the other hand, encoderdecoder models outperform other architectures in replicating the overall compression process, but they overpredict the energy of high-frequency components.
Download Fast Temporal Convolutions for Real-Time Audio Signal Processing
This paper introduces the possibilities of optimizing neural network convolutional layers for modeling nonlinear audio systems and effects. Enhanced methods for real-time dilated convolutions are presented to achieve faster signal processing times than in previous work. Due to the improved implementation of convolutional layers, a significant decrease in computational requirements was observed and validated on different configurations of single layers with dilated convolutions and WaveNet-style feedforward neural network models. In most cases, equivalent signal processing times were achieved to those using recurrent neural networks with Long Short-Term Memory units and Gated Recurrent Units, which are considered state-of-the-art in the field of black-box virtual analog modeling.
Download Grey-Box Modelling of Dynamic Range Compression
This paper explores the digital emulation of analog dynamic range compressors, proposing a grey-box model that uses a combination of traditional signal processing techniques and machine learning. The main idea is to use the structure of a traditional digital compressor in a machine learning framework, so it can be trained end-to-end to create a virtual analog model of a compressor from data. The complexity of the model can be adjusted, allowing a trade-off between the model accuracy and computational cost. The proposed model has interpretable components, so its behaviour can be controlled more readily after training in comparison to a black-box model. The result is a model that achieves similar accuracy to a black-box baseline, whilst requiring less than 10% of the number of operations per sample at runtime.
Download Model Bending: Teaching Circuit Models New Tricks
A technique is introduced for generating novel signal processing systems grounded in analog electronic circuits, called model bending. By applying the ideas behind circuit bending to models of nonlinear analog circuits it is possible to create novel nonlinear signal processors which mimic the behavior of analog electronics, but which are not possible to implement in the analog realm. The history of both circuit bending and circuit modeling is discussed, as well as a theoretical basis for how these approaches can complement each other. Potential pitfalls to the practical application of model bending are highlighted and suggested solutions to those problems are provided, with examples.
Download Physical Modeling Using Recurrent Neural Networks with Fast Convolutional Layers
Discrete-time modeling of acoustic, mechanical and electrical systems is a prominent topic in the musical signal processing literature. Such models are mostly derived by discretizing a mathematical model, given in terms of ordinary or partial differential equations, using established techniques. Recent work has applied the techniques of machine-learning to construct such models automatically from data for the case of systems which have lumped states described by scalar values, such as electrical circuits. In this work, we examine how similar techniques are able to construct models of systems which have spatially distributed rather than lumped states. We describe several novel recurrent neural network structures, and show how they can be thought of as an extension of modal techniques. As a proof of concept, we generate synthetic data for three physical systems and show that the proposed network structures can be trained with this data to reproduce the behavior of these systems.