Download A Physically-motivated Triode Model for Circuit Simulations
A new model for triodes of type 12AX7 is presented, featuring simple and continuously differentiable equations. The description is physically-motivated and enables a good replication of the grid current. Free parameters in the equations are fitted to reference data originated from measurements of practical triodes. It is shown, that the equations are able to characterize the properties of real tubes in good accordance. Results of the model itself and when embedded in an amplifier simulation are presented and align well.
Download Physical Modeling of the MXR Phase 90 Guitar Effect Pedal
In this study, a famous boxed effect pedal, also called stompbox, for electrical guitars is analyzed and simulated. The nodal DK method is used to create a non-linear state-space system with Matlab as a physical model for the MXR Phase 90 guitar effect pedal. A crucial component of the effect are Junction Field Effect Transistors (JFETs) which are used as variable resistors to dynamically vary the phase-shift characteristic of an allpass-filter cascade. So far, virtual analog modeling in the context of audio has mainly been applied to diode-clippers and vacuum tube circuits. This work shows an efficient way of describing the nonlinear behavior of JFETs, which are wide-spread in audio devices. To demonstrate the applicability of the proposed physical model, a real-time VST audio plug-in was implemented.
Download Analysis and Simulation of an Analog Guitar Compressor
The digital modeling of guitar effect units requires a high physical similarity between the model and the analog reference. The famous MXR DynaComp is used to sustain the guitar sound. In this work its complex circuit is analyzed and simulated by using state-space representations. The equations for the calculation of important parameters within the circuit are derived in detail and a mathematical description of the operational transconductance amplifier is given. In addition the digital model is compared to the original unit.
Download Physical Modelling of a Wah-wah Effect Pedal as a Case Study for Application of the Nodal DK Method to Circuits with Variable Parts
The nodal DK method is a systematic way to derive a non-linear state-space system as a physical model for an electrical circuit. Unfortunately, calculating the system coefficients requires inversion of a relatively large matrix. This becomes a problem when the system changes over time, requiring continuous recomputation of the coefficients. In this paper, we present an extension of the DK method to more efficiently handle variable circuit elements. The method is exemplified with the Dunlop Crybaby wah-wah effect pedal, as the continuous change of the potentiometer position is an extremely important aspect of the wah-wah effect.
Download Black-box Modeling of Distortion Circuits with Block-Oriented Models
This paper describes black-box modeling of distortion circuits. The analyzed distortion circuits all originate from guitar effect pedals, which are widely used to enrich the sound of an electric guitar with harmonics. The proposed method employs a blockoriented model which consists of a linear block (filter) and a nonlinear block. In this study the nonlinear block is represented by an extended parametric input/output mapping function. Three distortion circuits with different nonlinear elements are analyzed and modeled. The linear and nonlinear parts of the circuit are analyzed and modeled separately. The Levenberg–Marquardt algorithm is used for iterative optimization of the nonlinear parts of the circuits. Some circuits could not be modeled with high accuracy, but the proposed model has shown to be a versatile and flexible tool when modeling distortion circuits.
Download Automatic Decomposition of Non-linear Equation Systems in Audio Effect Circuit Simulation
In the digital simulation of non-linear audio effect circuits, the arising non-linear equation system generally poses the main challenge for a computationally cheap implementation. As the computational complexity grows super-linearly with the number of equations, it is beneficial to decompose the equation system into several smaller systems, if possible. In this paper we therefore develop an approach to determine such a decomposition automatically. We limit ourselves to cases where an exact decomposition is possible, however, and do not consider approximate decompositions.
Download Modulation And Delay Line Based Digital Audio Effects
In the field of musicians and recording engineers audio effects are mainly described and indicated by their acoustical effect. Audio effects can also be categorized from a technical point of view. The main criterion is found to be the type of modulation technique used to achieve the effect. After a short introduction to the different modulation types, three more sophisticated audio effect applications are presented, namely single sideband domain vibrato (mechanical vibrato bar simulation), a rotary speaker simulation, and an enhanced pitch transposing scheme.
Download The Influence of Small Variations in a Simplified Guitar Amplifier Model
A strongly simplified guitar amplifier model, consisting of four stages, is presented. The exponential sweep technique is used to measure the frequency dependent harmonic spectra. The influence of small variations of the system parameters on the harmonic components is analyzed. The differences of the spectra are explained and visualized.
Download Discretization of Parametric Analog Circuits for Real-Time Simulations
The real-time simulation of analog circuits by digital systems becomes problematic when parametric components like potentiometers are involved. In this case the coefficients defining the digital system will change and have to be adapted. One common solution is to recalculate the coefficients in real-time, a possibly computationally expensive operation. With a view to the simulation using state-space representations, two parametric subcircuits found in typical guitar amplifiers are analyzed, namely the tone stack, a linear passive network used as simple equalizer and a distorting preamplifier, limiting the signal amplitude with LEDs. Solutions using trapezoidal rule discretization are presented and discussed. It is shown, that the computational costs in case of recalculation of the coefficients are reduced compared to the related DK-method, due to minimized matrix formulations. The simulation results are compared to reference data and show good match.
Download Polyphonic Pitch Detection by Iterative Analysis of the Autocorrelation Function
In this paper, a polyphonic pitch detection approach is presented, which is based on the iterative analysis of the autocorrelation function. The idea of a two-channel front-end with periodicity estimation by using the autocorrelation is inspired by an algorithm from Tolonen and Karjalainen. However, the analysis of the periodicity in the summary autocorrelation function is enhanced with a more advanced iterative peak picking and pruning procedure. The proposed algorithm is compared to other systems in an evaluation with common data sets and yields good results in the range of state of the art systems.