Download Antialiasing Piecewise Polynomial Waveshapers
Memoryless waveshapers are commonly used in audio signal processing. In discrete time, they suffer from well-known aliasing artifacts. We present a method for applying antiderivative antialising (ADAA), which mitigates aliasing, to any waveshaping function that can be represented as a piecewise polynomial. Specifically, we treat the special case of a piecewise linear waveshaper. Furthermore, we introduce a method for for replacing the sharp corners and jump discontinuities in any piecewise linear waveshaper with smoothed polynomial approximations, whose derivatives match the adjacent line segments up to a specified order. This piecewise polynomial can again be antialiased as a special case of the general piecewise polynomial. Especially when combined with light oversampling, these techniques are effective at reducing aliasing and the proposed method for rounding corners in piecewise linear waveshapers can also create more “realistic” analog-style waveshapers than standard piecewise linear functions.
Download Graphic Equalizers Based on Limited Action Networks
Several classic graphic equalizers, such as the Altec 9062A and the “Motown EQ,” have stepped gain controls and “proportional bandwidth” and used passive, constant-resistance, RLC circuit designs based on “limited-action networks.” These are related to bridged-T-network EQs, with several differences that cause important practical improvements, also affecting their sound. We study these networks, giving their circuit topologies, design principles, and design equations, which appear not to have been published before. We make a Wave Digital Filter which can model either device or an idealized “Exact” version, to which we can add various new extensions and features.