Download Real-Time Black-Box Modelling With Recurrent Neural Networks This paper proposes to use a recurrent neural network for black-box modelling of nonlinear audio systems, such as tube amplifiers and distortion pedals. As a recurrent unit structure, we test both Long Short-Term Memory and a Gated Recurrent Unit. We compare the proposed neural network with a WaveNet-style deep neural network, which has been suggested previously for tube amplifier modelling. The neural networks are trained with several minutes of guitar and bass recordings, which have been passed through the devices to be modelled. A real-time audio plugin implementing the proposed networks has been developed in the JUCE framework. It is shown that the recurrent neural networks achieve similar accuracy to the WaveNet model, while requiring significantly less processing power to run. The Long Short-Term Memory recurrent unit is also found to outperform the Gated Recurrent Unit overall. The proposed neural network is an important step forward in computationally efficient yet accurate emulation of tube amplifiers and distortion pedals.
Download Neural Grey-Box Guitar Amplifier Modelling with Limited Data This paper combines recurrent neural networks (RNNs) with the discretised Kirchhoff nodal analysis (DK-method) to create a grey-box guitar amplifier model. Both the objective and subjective results suggest that the proposed model is able to outperform a baseline black-box RNN model in the task of modelling a guitar amplifier, including realistically recreating the behaviour of the amplifier equaliser circuit, whilst requiring significantly less training data. Furthermore, we adapt the linear part of the DK-method in a deep learning scenario to derive multiple state-space filters simultaneously. We frequency sample the filter transfer functions in parallel and perform frequency domain filtering to considerably reduce the required training times compared to recursive state-space filtering. This study shows that it is a powerful idea to separately model the linear and nonlinear parts of a guitar amplifier using supervised learning.
Download Sample Rate Independent Recurrent Neural Networks for Audio Effects Processing In recent years, machine learning approaches to modelling guitar amplifiers and effects pedals have been widely investigated and have become standard practice in some consumer products. In particular, recurrent neural networks (RNNs) are a popular choice for modelling non-linear devices such as vacuum tube amplifiers and distortion circuitry. One limitation of such models is that they are trained on audio at a specific sample rate and therefore give unreliable results when operating at another rate. Here, we investigate several methods of modifying RNN structures to make them approximately sample rate independent, with a focus on oversampling. In the case of integer oversampling, we demonstrate that a previously proposed delay-based approach provides high fidelity sample rate conversion whilst additionally reducing aliasing. For non-integer sample rate adjustment, we propose two novel methods and show that one of these, based on cubic Lagrange interpolation of a delay-line, provides a significant improvement over existing methods. To our knowledge, this work provides the first in-depth study into this problem.
Download A pickup model for the Clavinet In this paper recent findings on magnetic transducers are applied to the analysis and modeling of Clavinet pickups. The Clavinet is a stringed instrument having similarities to the electric guitar, it has magnetic single coil pickups used to transduce the string vibration to an electrical quantity. Data gathered during physical inspection and electrical measurements are used to build a complete model which accounts for nonlinearities in the magnetic flux. The model is inserted in a Digital Waveguide (DWG) model for the Clavinet string for its evaluation.
Download The Helmholtz Resonator Tree The Helmholtz resonator is a prototype of a single acoustic resonance, which can be modeled with a digital resonator. This paper extends this concept by coupling several Helmholtz resonators. The resulting structure is called a Helmholtz resonator tree. The height of the tree is defined by the number of resonator layers that are interconnected. The overall number of resonance frequencies of a Helmholtz resonator tree is the same as its height. A Helmholtz resonator tree can be modeled using wave digital filters (WDF), when electro-acoustic analogies are applied. A WDF tool for implementing Helmholtz resonator trees has been developed in C++. A VST plugin and an Android mobile application were created, which can run short Helmholtz resonator trees in real time. Helmholtz resonator trees can be used for the real-time synthesis of percussive sounds and for realizing novel filtering which can be tuned using intuitive physical parameters.
Download Neural Modelling of Time-Varying Effects This paper proposes a grey-box neural network based approach
to modelling LFO modulated time-varying effects.
The neural
network model receives both the unprocessed audio, as well as
the LFO signal, as input. This allows complete control over the
model’s LFO frequency and shape. The neural networks are trained
using guitar audio, which has to be processed by the target effect
and also annotated with the predicted LFO signal before training.
A measurement signal based on regularly spaced chirps was used
to accurately predict the LFO signal. The model architecture has
been previously shown to be capable of running in real-time on a
modern desktop computer, whilst using relatively little processing
power. We validate our approach creating models of both a phaser
and a flanger effects pedal, and theoretically it can be applied to
any LFO modulated time-varying effect. In the best case, an errorto-signal ratio of 1.3% is achieved when modelling a flanger pedal,
and previous work has shown that this corresponds to the model
being nearly indistinguishable from the target device.
Download Exposure Bias and State Matching in Recurrent Neural Network Virtual Analog Models Virtual analog (VA) modeling using neural networks (NNs) has
great potential for rapidly producing high-fidelity models. Recurrent neural networks (RNNs) are especially appealing for VA due
to their connection with discrete nodal analysis. Furthermore, VA
models based on NNs can be trained efficiently by directly exposing them to the circuit states in a gray-box fashion. However,
exposure to ground truth information during training can leave the
models susceptible to error accumulation in a free-running mode,
also known as “exposure bias” in machine learning literature. This
paper presents a unified framework for treating the previously
proposed state trajectory network (STN) and gated recurrent unit
(GRU) networks as special cases of discrete nodal analysis. We
propose a novel circuit state-matching mechanism for the GRU
and experimentally compare the previously mentioned networks
for their performance in state matching, during training, and in exposure bias, during inference. Experimental results from modeling
a diode clipper show that all the tested models exhibit some exposure bias, which can be mitigated by truncated backpropagation
through time. Furthermore, the proposed state matching mechanism improves the GRU modeling performance of an overdrive
pedal and a phaser pedal, especially in the presence of external
modulation, apparent in a phaser circuit.
Download Examining the Oscillator Waveform Animation Effect An enhancing effect that can be applied to analogue oscillators in subtractive synthesizers is termed Animation, which is an efficient way to create a sound of many closely detuned oscillators playing in unison. This is often referred to as a supersaw oscillator. This paper first explains the operating principle of this effect using a combination of additive and frequency modulation synthesis. The Fourier series will be derived and results will be presented to demonstrate its accuracy. This will then provide new insights into how other more general waveform animation processors can be designed.
Download Grey-Box Modelling of Dynamic Range Compression This paper explores the digital emulation of analog dynamic range compressors, proposing a grey-box model that uses a combination of traditional signal processing techniques and machine learning. The main idea is to use the structure of a traditional digital compressor in a machine learning framework, so it can be trained end-to-end to create a virtual analog model of a compressor from data. The complexity of the model can be adjusted, allowing a trade-off between the model accuracy and computational cost. The proposed model has interpretable components, so its behaviour can be controlled more readily after training in comparison to a black-box model. The result is a model that achieves similar accuracy to a black-box baseline, whilst requiring less than 10% of the number of operations per sample at runtime.
Download Guitar Tone Stack Modeling with a Neural State-Space Filter In this work, we present a data-driven approach to modeling tone stack circuits in guitar amplifiers and distortion pedals. To this aim, the proposed modeling approach uses a feedforward fully connected neural network to predict the parameters of a coupledform state-space filter, ensuring the numerical stability of the resulting time-varying system. The neural network is conditioned on the tone controls of the target tone stack and is optimized jointly with the coupled-form state-space filter to match the target frequency response. To assess the proposed approach, we model three popular tone stack schematics with both matched-order and overparameterized filters and conduct an objective comparison with well-established approaches that use cascaded biquad filters. Results from the conducted experiments demonstrate improved accuracy of the proposed modeling approach, especially in the case of over-parameterized state-space filters while guaranteeing numerical stability. Our method can be deployed, after training, in realtime audio processors.