Download Audio Processor Parameters: Estimating Distributions Instead of Deterministic Values
Audio effects and sound synthesizers are widely used processors in popular music. Their parameters control the quality of the output sound. Multiple combinations of parameters can lead to the same sound. While recent approaches have been proposed to estimate these parameters given only the output sound, those are deterministic, i.e. they only estimate a single solution among the many possible parameter configurations. In this work, we propose to model the parameters as probability distributions instead of deterministic values. To learn the distributions, we optimize two objectives: (1) we minimize the reconstruction error between the ground truth output sound and the one generated using the estimated parameters, asisit usuallydone, but also(2)we maximize the parameter diversity, using entropy. We evaluate our approach through two numerical audio experiments to show its effectiveness. These results show how our approach effectively outputs multiple combinations of parameters to match one sound.
Download Vivos Voco: A survey of recent research on voice transformations at IRCAM
IRCAM has a long experience in analysis, synthesis and transformation of voice. Natural voice transformations are of great interest for many applications and can be combine with text-to-speech system, leading to a powerful creation tool. We present research conducted at IRCAM on voice transformations for the last few years. Transformations can be achieved in a global way by modifying pitch, spectral envelope, durations etc. While it sacrifices the possibility to attain a specific target voice, the approach allows the production of new voices of a high degree of naturalness with different gender and age, modified vocal quality, or another speech style. These transformations can be applied in realtime using ircamTools TR A X.Transformation can also be done in a more specific way in order to transform a voice towards the voice of a target speaker. Finally, we present some recent research on the transformation of expressivity.
Download A Generic System for Audio Indexing: Application to Speech/Music Segmentation and Music Genre Recognition
In this paper we present a generic system for audio indexing (classification/ segmentation) and apply it to two usual problems: speech/ music segmentation and music genre recognition. We first present some requirements for the design of a generic system. The training part of it is based on a succession of four steps: feature extraction, feature selection, feature space transform and statistical modeling. We then propose several approaches for the indexing part depending of the local/ global characteristics of the indexes to be found. In particular we propose the use of segment-statistical models. The system is then applied to two usual problems. The first one is the speech/ music segmentation of a radio stream. The application is developed in a real industrial framework using real world categories and data. The performances obtained for the pure speech/ music classes problem are good. However when considering also the non-pure categories (mixed, bed) the performances of the system drop. The second problem is the music genre recognition. Since the indexes to be found are global, “segment-statistical models” are used leading to results close to the state of the art.
Download Local Key estimation Based on Harmonic and Metric Structures
In this paper, we present a method for estimating the local keys of an audio signal. We propose to address the problem of local key finding by investigating the possible combination and extension of different previous proposed global key estimation approaches. The specificity of our approach is that we introduce key dependency on the harmonic and the metric structures. In this work, we focus on the relationship between the chord progression and the local key progression in a piece of music. A contribution of our work is that we address the problem of finding a good analysis window length for local key estimation by introducing information related to the metric structure in our model. Key estimation is not performed on empirical-chosen segment length but on segments that are adapted to the analyzed piece and independent from the tempo. We evaluate and analyze our results on a new database composed of classical music pieces.
Download Combining classifications based on local and global features: application to singer identification
In this paper we investigate the problem of singer identification on acapella recordings of isolated notes. Most of studies on singer identification describe the content of signals of singing voice with features related to the timbre (such as MFCC or LPC). These features aim to describe the behavior of frequencies at a given instant of time (local features). In this paper, we propose to describe sung tone with the temporal variations of the fundamental frequency (and its harmonics) of the note. The periodic and continuous variations of the frequency trajectories are analyzed on the whole note and the features obtained reflect expressive and intonative elements of singing such as vibrato, tremolo and portamento. The experiments, conducted on two distinct data-sets (lyric and pop-rock singers), prove that the new set of features capture a part of the singer identity. However, these features are less accurate than timbre-based features. We propose to increase the recognition rate of singer identification by combining information conveyed by local and global description of notes. The proposed method, that shows good results, can be adapted for classification problem involving a large number of classes, or to combine classifications with different levels of performance.