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ABSTRACT

In this paper, we present a method for estimating the local keys
of an audio signal. We propose to address the problem of localkey
finding by investigating the possible combination and extension of
different previous proposed global key estimation approaches. The
specificity of our approach is that we introduce key dependency on
the harmonic and the metric structures. In this work, we focus on
the relationship between the chord progression and the local key
progression in a piece of music. A contribution of our work is
that we address the problem of finding a good analysis window
length for local key estimation by introducing informationrelated
to the metric structure in our model. Key estimation is not per-
formed on empirical-chosen segment length but on segments that
are adapted to the analyzed piece and independent from the tempo.
We evaluate and analyze our results on a new database composed
of classical music pieces.

1. INTRODUCTION

Tonality analysis is one of the most important aspects of Western
tonal music. Tonality analysis describes the relationshipbetween
the different musical keys present in a piece of music. A musical
key implies a tonal center that is the most stable pitch (the tonic)
and a mode (major or minor). The elements of the melody and the
harmony of a musical fragment are related to each other by themu-
sical key. This aspect of music has interested researchers for a long
time because key detection task has many applications in content-
based music information retrieval such as classification, segmen-
tation, indexing or summarization. Various approaches have been
proposed in previous works for estimating the global key of apiece
of music. Some approaches were proposed for symbolic data, us-
ing template-based approaches [1], [2], [3], or geometry-based ap-
proaches [4]. Others were proposed for audio data, using template-
based approaches [5], [6], [7] , [8],[9], geometry-based approaches
[10], or HMM-based approaches [11]. Finding the main key of a
piece of music is only a little part of tonality analysis. Indeed,
even if a piece of music generally starts and ends in a particu-
lar key referred to as the main or global key of the piece, it is
common that the composer will move between keys, sometimes
without definitely establish them. A change in the musical key is
called a modulation. In this paper, we are interested in the prob-
lem of local key estimation: we aim at segmenting the music piece
according to the points of modulation and finding the key of each
segment. Little work has been conducted on this topic. In this
paper we propose to address the problem of local key finding by
investigating the possible combination and extension of different
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previous proposed global key estimation approaches introducing
key dependency on the harmonic and the metric structures. Har-
mony is directly related to the musical key. In Western tonalmu-
sic, the chord progression determines the harmonic structure of a
piece of music. It is strongly related to the musical key of the
piece. A musical scale can be associated with each key. Chords
that are specific to the key can be constructed around this scale.
Although the idea to use chords to find the key of a musical ex-
cerpt has already been explored [12], to our knowledge, no precise
study about the relationship between the two attributes hasbeen
conducted, in particular in the case of local key estimation. This
partly comes from a lack of databases labeled in chords and lo-
cal key. One contribution of this work is to present such a study
on classical music pieces labeled in chords and keys containing
many modulations. The problem of finding a good analysis win-
dow length for local key estimation has been evoked in the past,
without any satisfying answer. Another contribution of ourwork
is that we address this problem by introducing information related
to the metric structure in our model. Key estimation is not per-
formed on empirical-chosen segment length but on segments that
are adapted to each piece.

The structure of the paper is as follows. First, in section 2,we
review some previous works on global and local key estimation.
We then present in section 3 our model for local key estimation,
which relies on a probabilistic model for simultaneous chord pro-
gression and downbeat locations estimation. The local key estima-
tion is based on the harmonic and metric structures of the piece.
Eventually, in section 4, the proposed model is evaluated ona set
classical music pieces. A conclusions section closes the article.

2. RELATED WORK

In this section, we review some previous works on key estima-
tion. We start by template-based approaches proposed for global
key estimation that have inspired our work. We then present pre-
vious methods proposed for local key estimation and conclude
the section by reviewing key estimation methods based on chord
progression. A large part of audio global key finding systemsis
based on the use of key profiles/templates. Pitch Class Profiles of
Chroma features are extracted from the signal and then compared
to theoretical templates that indicate the perceptual importance of
notes or chords within a key. [1] proposes a method called the
probe tone methodthat gives a measure quantifying the hierar-
chy of notes in a given tonal context. For major and minor keys,
12-dimensional vectors representing the perceptual importance of
the 12 semitones of a chromatic scale in the considered key are
proposed. These key profiles are used to estimate the key of a
MIDI melodic line, by correlating it with a vector containing the
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relative duration of each of the 12 pitch classes within the MIDI
sequence. [13] extends the model proposed in [1] to the case of
polyphonic audio files by considering that the profile value for a
given pitch class represents also the hierarchy of a chord ina given
key. The polyphonic profiles for the 24 different keys are built
considering only the three main triads of the keys (tonic, subdom-
inant and dominant). This cognition-inspired method is compared
with several machine-learning techniques. The methodologies are
evaluated over a large audio database, achieving a64% of cor-
rect overall tonality (mode and key-note) estimation. In this study
it is found that the use of machine learning algorithms result in
very little improvements over the cognitive-based technique. [11]
compares a cognitive-based method similar to the one presented
in [13] to an HMM-based approach. Two hidden Markov models
are trained on a labeled database in order to learn the character-
istics of the major and minor modes. From these two models, 24
hidden Markov models corresponding to the 24 keys are derived.
The key of the audio file is then obtained by computing the like-
lihood of its chroma sequence given each HMM and selecting the
one giving the highest value. It was found that the HMM-based
approach leads to a lower recognition rate. Note that, in this work,
the states in the HMMs have no musical meanings. [6] presents
a template-based key finding model. The key is estimated by cor-
relating spectral summary information obtained from audiowith
precomputed templates. The templates are obtained from real in-
strument sounds. For this, the spectra of the sounds are weighted
by key profiles, which approximate the pitch distribution. Several
key profiles are compared: Krumhansl’s probe-tone ratings [1],
Temperley’s profiles [2] and a flat diatonic profile (12-dimensional
vectors containing 1 at pith classes that are comprised in the con-
sidered diatonic scale, 0 elsewhere). The combination of the Tem-
perley’s and diatonic profiles was found to give the best results.

Concerning the problem of local key estimation, even if, com-
pared to the problem of global key estimation, little work has been
conducted on this topic, various approaches have already been pro-
posed for this task. [14] presents a method for determining points
of modulation in a piece of music in the symbolic domain us-
ing a geometric model for tonality called the Spiral Array which
incorporates simultaneously pitch, interval, chord and key rela-
tions. This method has been extended to the audio case in [10].
[15] presents an approach for detecting multiple keys and locat-
ing the key boundaries in the melody of popular songs in MIDI
format. Overlapping segments are first extracted form the melody
using a diatonic scale model, each one corresponding to a single
mode. Segments of unrelated modes are eliminated. Key labels
and boundaries are determined by grouping the remaining seg-
ments. Another geometric tonality model describing relationship
between keys has recently been proposed in [16]. [17] proposes
a method for detecting changes in the harmonic content of musi-
cal audio signals. A new model for equal tempered tonal spaceis
introduced. Segmentation of audio signal and preprocessing stage
for chord recognition and harmonic classification algorithms us-
ing HMMs are the main potential applications. [18] presentsan
approach to derive an appropriate representation of tone centers
based on the audio signal using constant Q profiles. The constant Q
profiles are 12-dimensional vectors where each component refers
to a pitch class. They are derived from sampled cadential chord
progressions and small pieces of music. Tonal centers of a music
piece are tracked by computing cq-profiles of the piece and match-
ing every given cq-profile with a profile of the reference set using
a fuzzy distance. [19] proposes an HMM-based method to seg-

ment musical signals according to the key changes and to identify
the key of each segment. The front-end of the system is based
on the calculation of a chromagram. The key detection task is
divided into two steps: first the key is estimated without consid-
ering the mode because diatonic scales are assumed and relative
modes share the same diatonic scale. The mode (major or mi-
nor) is then estimated. Classical piano music is employed totest
the performances of the proposed method using three measures:
recall, precision and label accuracy. [20] proposes an interesting
new model for detecting modulations and labeling local keysusing
a non-negative matrix factorization method for segmentation. To
identify sections that are candidates for unique local keys, groups
of contiguous chroma vectors are used as input in the segmenta-
tion stage. The length of the window is chosen empirically. The
local keys are then found using a correlation model. The method
is evaluated on three different data sets: pop songs, classical music
and Kosta and Payne corpus.

Because chords and musical keys are musical attributes closely
related to each other in Western tonal music, the idea to use the
chord progression of a piece to find the keys comes out naturally.
In the framework of global key estimation, [21] proposes key-
dependent chord HMMs trained on synthesized audio for chord
recognition and global key estimation. In this approach, 24key-
dependent HMMs, one for each major and minor keys are built.
Key estimation and chord recognition are performed simultane-
ously selecting the model whose likelihood is highest. It isob-
served that the proposed method is similar to [11] but, whereas in
[11] the states in the HMMs have no musical meanings, in [21],
hidden states are treated as chords, which also allows identifying
the chord sequence. [22] presents a technique to estimate the pre-
dominant key in a symbolic musical excerpt. A HMM is used
where the hidden states are the 24 major and minor keys and the
observations are pairs of consecutive chords. Human expectation
of harmonic relationships is encoded in the model using results
from perceptual tests. The parameters of the HMM are trained
using hand-annotated chord symbols. This work was extendedto
the audio case in [12]. Although this model has only been eval-
uated on the case of global key estimation, it could be used for
local key estimation. A recent work [23] proposes a probabilistic
framework for simultaneously estimating keys and chords. Novel
observation likelihood model and chord/key transition models are
proposed that are derived from music theory of Lerdahl.

3. PROPOSED APPROACH

In this paper we are interested in the problem of local key find-
ing in polyphonic audio files. We propose to combine and extend
methods proposed for global key finding to the case of local key
finding. We rely on the above-mentioned method for global key
estimation [13] based on key reference profiles, which are corre-
lated with input pitch class profiles. The underlying idea ofthis
work is that in case of polyphonic music, the chords can be used
to estimate the musical key. However, in this previous work,as in
[11], there is no estimation of the chords and no investigation of
their relationship to keys. We study this relationship in the present
work. To integrate the concept of key modulating over time, we
propose to use an HMM where the hidden states are the keys which
can be observed through observable data that are the chords.The
use of the HMM allows us to integrate some musical information
about key changes, as proposed in [22]. As shown in the last sec-
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tion, HMM have already been used for local key estimation ([12],
[19]). However, this was done using a frame-by-frame analysis. A
contribution of the present work is that we introduce information
related to the metric structure of the audio file in order to make the
local key estimation robust. One of the problems when segmenting
a piece of music into sections with different keys is to accurately
choose the length of the analysis window used for key estimation.
In the case of global key estimation, only the first seconds ofthe
piece are used to estimate the key. Several studies have shown that
the choice of the duration of the analyzed excerpt has a significant
impact on the key estimation results (see for instance [6] or[10]).
Concerning local key estimation, the length of the analysiswin-
dow was found empirically in previous works. After computing
chroma vectors on short overlapping frames, [19] or [18] perform
a frame-by-frame musical key analysis. An interesting alternative
to sliding window key center tracking techniques has been pro-
posed by [20] where a segmentation stage which identifies sec-
tions that are candidates for unique local keys is performedprior
to local key estimation. Groups of contiguous chroma vectors are
used as input. Heavily overlapped groups of chroma vectors are
averaged over a span ofs seconds. The value of the parameters
is found empirically (7.4s) after testing several window sizes. The
question of optimal segment length remains an open problem.A
too small window size would focus the chromagram on individual
chords more than on keys whereas the use of a too large window
size would lead to segments containing several keys and key mod-
ulations points would become ambiguous. The drawback of using
an empirically chosen window size is that, if the testset contains
for instance some pieces with a fast tempo compared to the oth-
ers, the window length will probably be too long and changes of
keys will be ignored by the algorithm. For pieces with a slow
tempo, chords more than keys will be estimated. Ideally, thewin-
dow length should be related to the tempo of the piece. We get
around this difficulty here by segmenting the piece according to
the metric structure. We perform a beat-synchronous analysis. For
local key estimation, the temporal unity, which is used herefor key
analysis, is the musical bar. The analysis window length hasthus
a musical meaning.

3.1. Model

In this section we present a model that allows estimating thelocal
keys of a musical excerpt using the underlying chord progression,
which characterize the harmonic structure, and the downbeat lo-
cations, which characterize the metric structure. Metrical level is
a hierarchical structure. The beat or the tactus level is themost
salient metrical level and corresponds to the foot-tappingrate. Mu-
sical signals are divided into units of equal time value calledmea-
suresor bars. One important attribute of the metric structure is
thedownbeatsor the first beats of each measure. Here, the chords
and the downbeats are estimated simultaneously using a “double-
states” HMM where a state is a combination of a chord type and
a position of the chord in the measure. We consider here a chord
lexicon composed of theI = 24 Major and minor triads (C Major,
. . . , B Major, C minor, . . . , B minor). The local key estimation
model is close to the chord estimation model. The 24 key space
is modeled by an ergodic 24-states HMM, where each state repre-
sents one of the 24 major and minor keys. In our model, the hidden
states (keys) can be observed through observable data that are re-
lated to the chord progression of the piece. At each time instant,
the chords imply a local key. At each time instant, the key gen-

erates an observable 24-dimensional vector representing the prob-
ability of each of the 24 chords to have been emitted. Given the
observations, we estimate the most likely key sequence overtime
in a maximum likelihood sense. The flowchart of the system is
represented in Figure 1.

Figure 1: Flowchart of the local key estimation system.

3.2. Feature vectors

As most of chords and key detection systems, the front-end ofour
system is based on the extraction of a set of feature vectors that
represent the audio signal, the Pitch Class Profiles [24] orchroma
vectors [25]. The succession of chroma vectors over time is known
aschromagram. The chroma vectors are in general 12-dimensional
vectors that represent the spectral energy of the pitch classes of the
chromatic scale. For chromagram computation, we use the method
we proposed in [26]. To integrate the metric structure of thepiece,
we built meter-related features by averaging the chroma vectors
according to the beat locations so that we obtain one featurevector
per beat1.

1This supposes to integrate a beat-tracker as a front-end of the system.
In our experiments, the beat locations have been annotated by hand be-
cause the testset is composed of classical music pieces containing lots of
deviations in tempo that results from the expressivity in classical music.
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3.3. Harmonic and metric structures

The harmonic structure is defined by the chord progression and
the metric structure is defined by the downbeat locations. These
two musical attributes are estimated simultaneously according to
the method we proposed in [26]. This method is briefly summa-
rized here. We consider an ergodicI ∗K-states HMM where each
statesik is defined as an occurrence of a chordci, i ∈ [1 : I ] at a
“beat location in the measure”bk, k ∈ [1; K]: sik = [ci, bk]. In
our caseI = 24 chords andK = 4 for a song built on constant
four-beats meter,K = 3 for a song built on constant three-beats
meter. Each state in the model generates with some probability an
observation vectorO(tm) at timetm defined by the observation
probabilities. Given the observations, we estimate the most likely
chord sequence over time and the downbeat locations in a maxi-
mum likelihood sense.

Initial state distribution: The prior probabilityπik for each state
is the prior probability to observe a specific chordci occurring on
a beat location in a measurebk. Since we do not knowa priori the
chord and the beat location the piece begins with, we initialize π
at 1

I∗K
for each of theI ∗ K states.

Observation chord symbol probability distribution: The obser-
vation probabilities are computed as:

P (O(tm)|sik) = P (O(tm)|ci)P (O(tm)|bk) (1)

whereP (O(tm)|ci) corresponds to the chord symbol observation
probabilities andP (O(tm)|bk) corresponds to the beat location
in the measure observation probabilities. The observationchord
symbol probabilities are obtained by computing the correlation be-
tween the observation vectors (the chroma vectors) and a setof
chord templates which are the theoretical chroma vectors corre-
sponding to theI = 24 major and minor triads. In what follows,
the succession of these 24-dimensional vectors is referredto as the
chordgram. The computation of thechordgramis detailed below.
The beat location in the measure observation probabilitiesis con-
sidered here as uniform.

State transition probability distribution: The transitions between
chords result from musical rules which are modeled in the state
transition matrixT . These rules are based on the harmonic struc-
ture and the metric structure. The transition matrixT used in our
HMM takes into account both the chord transitions and their re-
spective locations in the measure. To integrate harmonic rules, we
derive theI ∗ K-states transition matrixT from a I-states chord
type transition matrixTc based on music-theoretical knowledge
about key-relationships. This matrix is the same than the key tran-
sition matrix described below. We integrate metric rules inthe
I∗K-states transition matrixT relying on the following statement:
chords are more likely to change at the beginning of a measurethan
at other beat locations [27]. To favor chord changes on downbeats,
we attribute a lower self-transition probabilities2 in the state transi-
tion matrixT for chords occurring on theKth beat. The transition
matrix is for a four-beat meter song represented in Figure 2.The
harmony is more likely to change after a chord occurring on the
4th beat of the measure than after a chord occurring on a3rd beat
of the measure.

2Here, a self-transition means a transition between two identical chord
types, for instance from a CM chord to a CM chord.

Figure 2: Chord transition matrix for a singles-state HMM [left],
transition matrix in the case of a double-states HMM taking into
account the position of the chord in the measure [right].

Chord progression and downbeats detection: The optimal suc-
cession of states[ci, bk] over time is found using the Viterbi decod-
ing algorithm [28] which gives us the most likely path through the
HMM states given our sequence of observations. We obtain simul-
taneously the best sequence of chords over time and the downbeat
locations.

3.4. Chordgram

The chordgram is a succession of 24-dimensional vectors repre-
senting the probability that each chord has been emitted at each
tactus-frame. These instantaneous chord probabilities are obtained
by computing the correlation between the chroma vectors and24
chord templates. Each chord template is a 12-dimensional vector
that contains the theoretical amplitude values of the notesand their
harmonics composing a specific chord. The chord templates are
constructed considering the presence of the higher harmonics of
the theoretical notes it consists of, relying on the model presented
in [5]: the amplitude contribution of thehth harmonic composing
the spectrum of a note is set to0.6h−1. The chordgram is used for
local key estimation.

3.5. Extraction of key observation vectors

The key observation vectors are derived from the chords. In the
evaluation part, we will compare two methods. In the first case,
the key observation vectors are built from thechordgramusing the
instantaneous chord probabilities. In the second case, they are built
directly from the estimated chord progression. In general,the mu-
sical key of a music piece changes much less often that the chords
and remains the same during several bars. We segment the piece
into overlapping segments whose length is related to the measures
delimited by the downbeat. The local key is thus estimated onseg-
ments that have a musical meaning. Because musical phrase have
often length duration of 8 or 4+4 bars, we have chosen to segment
the pieces into 2-bars segments with 1-bar overlap. Becausekey
changes occur in general on the first beat of a measure it is impor-
tant that the analysis starts on a downbeat. In our experiments we
have tested the algorithm using other window analysis length and
found that the local key estimation results accuracy decreases with
longer windows. This is discussed below in section 4.3. The key
observation vectors are 24-dimensional vectors obtained by aver-
aging thechordgramor the estimated chord progression along the
overlapping 2-bars length segments.
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3.6. Key estimation from chords using hidden Markov models

From the key observation vectors, we estimate the succession of
keys in the track. The method is very similar to the one we pro-
posed for chord estimation. The initial state distributionof keys
is uniform ( 1

24
for each of the 24 states) since we have no reason

to prefer a key above another. The observation key probabilities
P (ki|O(tm)) are obtained by computing the correlation between
the key observation vectors and a set of key profiles that represent
the importance of each triad within a given key.

The key profiles are obtained using a method similar to the
one proposed in [13]. In the monophonic case, Krumhansl pro-
poses probe tone ratings [1] that represent the distribution of the
pitches according to the musical key. Two types of rating vec-
tors are proposed, one for the major mode and one for the minor
mode. Temperley has modified these key profiles in [2]. [6] pro-
posed Temperley-Diatonic pitch-distribution profiles which were
extended in [11] to the polyphonic case. In part 4, we will com-
pare all these key templates and propose a new one where all notes
have the same weight in the template but the one corresponding
to the tonic which has a triple weight. As in [11] and [13] the
polyphonic profiles for the 24 different keys are built considering
the three main triads of the keys (tonic, subdominant and domi-
nant). For instance, for a C major key, only C major, F major and
G major chords are considered. We detail below the key profiles
computation for major mode, the minor key profiles are obtained
in a similar way. LetT M

i , i ∈ [1, 12] denote the monophonic ma-
jor key templates. TheT Mp

i polyphonic major key templates are
computed according to the following equation:

8

>

>

<

>

>

:

T Mp
i (k) = T M

i (i), if k = i,
= T M

i ((i + 5)[12]), if k = (i + 5)[12],
= T M

i ((i + 7)[12]), if k = (i + 7)[12],
= 0 otherwise,

(2)

wherea[m] denotes the mathematical operatormodulo, the re-
mainder whena is divided bym.

The observation key probabilitiesP (ki|O(tm)) are obtained
according to Equation (3) and normalized so that

X

i

P (O(tm)|ki(tm)) = 1.

Let Tp

i , i ∈ [1, 24] denote a key template.

For i = 1 . . . 24, P (O(tm)|ki(tm)) =
O(tm).Ti

‖O(tm)‖.‖Ti‖
(3)

Key modulations in a music piece follow musical rules that
can be reflected in the state transition matrix. To integratemusi-
cal meaning in key transition, we adopt the key transition matrix
proposed in [22] already used as a chord transition matrix3. In [1],
Krumhansl studies the proximity between the various musical keys
using correlations between key profiles obtained from perceptual
tests. These key profile correlations have been used in [22] to de-
rive a key transition matrix in the context of local key estimation as
described below. Krumhansl gives numerical values correspond-
ing to key profile correlations for C major and C minor keys. The

3Chords and key are musical attributes related to the harmonic structure
and can be modeled in a similar way.

values can be circularly shifted to give the transition probabilities
for keys other than C major and C minor. In order to have prob-
abilities, all the values are made positive by adding 1, and then
normalized to sum to 1 for each key. The size of the final key
transition matrix is 24 x 24.

The optimal succession of states over time is found using the
Viterbi decoding algorithm that gives us the best sequence of keys
over time. The music piece is thus segmented into segments that
are labeled by a key.

4. EVALUATION

4.1. Testset

Classical Mozart piano pieces were used to evaluate the algorithm.
Trained musicians manually annotated the ground truth for chords
and local key by hand. Beat locations have first been annotated
using the softwareWavesurfer. Trained musicians had provided
a list of the chords and key with their duration in beats. The list
has been then automatically mapped to the beat locations result-
ing in the ground truth we use4. The testset consists in 5 move-
ments of Mozart piano sonatas: KV 283 #1 & 2, KV 309 #1 ,
KV 310 #1and KV 311 #2 corresponding to about 30 minutes of
music. Each piece contains several modulations and this is one of
the main reasons why they were selected. It has to be noticed that
it is very hard to label Mozart pieces in chords and musical key,
even for a well-trained musician because on the one hand, there
are a lot of ornamental notes (such as appoggiaturas, suspensions,
passing notes etc.) and on the other hand, harmony is frequently
incomplete (some notes of the chord are missing). This makesthe
choice of chords labels very difficult. Changes from one key to an-
other are often ambiguous, in particular when they are very short.
Moreover, modulation is very often a smooth process, it can take
several bars to establish properly a tonal center. Segmentscorre-
sponding to transition from one key to another have been labeled
as transition parts.

4.2. Evaluation measure

Chord estimation evaluation measure: The result of chord es-
timation we give corresponds to the mean and standard deviation
of correctly identified frames per song. Parts of the pieces where
no chord can be labeled (for instance when a chromatic scale is
played) have been ignored in the evaluation.
Local key estimation evaluation measure: Concerning local key
estimation, we consider, as in [19], two aspects of the results:
the label accuracy (how the estimated key is consistent withthe
ground truth) and the segmentation accuracy (how the detected
modulation points are consistent with the actual locations). For
evaluating local key label accuracy, we use a measure similar to
the one used for evaluating chord label accuracy. For evaluat-
ing segmentation accuracy, we use two metrics proposed in [19].
Precision(P ) is defined as the ratio of detected transitions that
are relevant.Recall(R) is defined as the ratio of relevant transi-
tions detected. We also give thef−measure(F ) which combines
the twoF = 2RP/(R + P ). A change of key can take several
bars. Two established keys are often separated by a transition part
where no key is firmly established. These parts, which have been
labeled as transition parts T in the ground truth, need to be taken

4The ground-truth chords and keys progression in beats can beobtained
by contacting the authors

DAFX-5



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

Table 1: Chords and local keys label accuracy results using a2-
bars length window and the newly proposed templates. Method
1): based on the chordgram. Method 2): based on the chord pro-
gression.

keys method 1) keys method 2) chords
label accuracy (%) 80.22 74.11 61.43

into account in the evaluation of segmentation accuracy. For this, a
tolerance windoww is used in the following way. If a modulation
is detected at framen1 and close enough to a relevant modulation
of the ground truth labeled at framen2 such that|n1 − n2| < w,
It is considered as correct. The greatest the value ofw is, the high-
est the precision and recall are. We present below results with w
corresponding to 1 or 2 bars.

4.3. Results and discussion

We have carried out several experiments to evaluate the impact of
various parameters on the local key estimation results: choice of
the key templates, choice of the length of the analysis window, key
estimation from thechordgramor from the estimated chord pro-
gression, influence of the tolerance window.

Relationship between chords and local key: We have evaluated
two different methods for local key estimation. In the first one
(method 1), the probability of each chord at a given time instant is
used to estimate the key. In the second one (method 2), the chords
are first estimated using a hidden Markov model and the local key
is derived from the estimated chord progression. Label accuracy
results are presented in Table 1. It is difficult to select thebest
between the two presented methods. Indeed, the best label key
results are obtained with (method 1) but it can be seen in Table 3
that method 2) slightly outperforms method 2) concerning local
key segmentation. Tests on a larger database would be neededto
clearly evaluate the performances of the two methods.

The analysis of the results piece by piece shows that there is
a correlation between the estimation of the chords and the estima-
tion of the key. We expected that a good estimation of the chords
would lead to a good estimation of the keys. This was corrobo-
rated when evaluating method 2). A good estimation in the chord
estimation resulted in a good estimation in the local keys whereas
a poor estimation of the chords resulted in a poor estimationof
the local keys. A deeper analysis showed that if the chord estima-
tion errors consisted in confusions with harmonically close chords
(such as dominant or subdominant chords), the key was correctly
estimated.

Importance of the metric structure: In Table 2, we present the
label accuracy results when the key analysis windows are setac-
cording to the downbeat locations (OD, on downbeats) and when
the starting point is not a downbeat (ND, no downbeats). To in-
vestigate the hypothesis of the importance of the metric structure
on the local key estimation, we have positioned the startingpoint
of the key analysis windows on a second beat in case of ND (no
downbeats). It can be seen that the label accuracy results are bet-
ter when the starting point is a downbeat. This is because key

Table 2: Local keys results using a 2-bars length window and the
newly proposed templates in case of method 1), when the key anal-
ysis windows are set according to the downbeat locations (OD, on
downbeats) and when the starting point is not a downbeat (ND,no
downbeats). The tolerance window isw = 1 bar.

OD ND
label accuracy (%) 80.21 76.43

segmentation f-measure 0.52 0.50

changes occur in general on downbeats. When the chordgram or
the chord progression are averaged against the downbeat locations,
some passages with different local keys may be mixed. There is no
clear difference in the key segmentation results. This is probably
due to the smoothness of the modulations (see below). Consid-
ering the metrical structure allows to improve the key estimation
results.

Effect of the length of the analysis window: In classical music,
musical phrases have in general a length of 4 or 8 bars. This is
particularly true for Mozart’s piano sonatas. Usually, themusi-
cal key remains constant within a phrase or at least within half of
the phrase (whereas the harmony changes several times). This is
why we chose to estimate the local key on segments of length cor-
responding to musical phrases. We have evaluated the algorithm
with different window lengths: 2, 4, 8 and 16 bars. The best re-
sults were obtained using a 2-bar length analysis window. This is
because, especially in slow movements, some modulations occur
after only 2 bars. Passages with different local keys are very likely
to be mixed when a longer analysis window is used. The accuracy
of the results decreases with the length of the analysis window, as
illustrated in Figure 3.
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Figure 3: Key estimation results in case of method 1) and 2) ac-
cording to the length of the key analysis window.

Effect of the choice of the key templates: Several key templates
have been proposed for global key estimation based on key tem-
plates. We investigated the impact of the type of used key tem-
plates on the results. We evaluated the algorithm with 5 types
of templates: Krumhansl, Temperley, diatonic, a combination of
Temperley and diatonic and finally a newly proposed key template
where all notes have the same weight in the template except the
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Table 3: Local keys segmentation accuracy (SA) results using a
2-bars length window and the newly proposed templates. Method
1): based on the chordgram. Method 2): based on the chord pro-
gression. two tolerance windows:w = 1 bar andw = 2 bars.

keys method 1) keys method 2)
w = 1 w = 2 w = 1 w = 2

SA precision 0.5723 0.8196 0.4489 0.6805
SA recall 0.4730 0.6874 0.7131 0.8691

SA f-measure 0.5170 0.7327 0.5451 0.7514

one corresponding to the tonic, which has a triple weight. The best
results were obtained using the newly proposed templates. The
next best results were obtained with the combination of Temper-
ley and diatonic key templates. This corroborated the experimental
results obtained in the case of global key estimation in [6] and [11].

Smooth modulations: The key segmentation accuracy results are
presented in Table 3 with two tolerance windows:w = 1 bar and
w = 2 bars. It can be seen that the segmentation accuracy results
increase a lot when we use a larger tolerance window. This canbe
explained by the fact that changes in keys are a very smooth pro-
cess that often takes several bars. It is thus difficult to estimate the
precise local keys boundaries. It would be interesting to formulate
and add a “local key transition” state in the model. This is left for
future works.

5. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a local key finding model that
segments an audio file in sections labeled with local keys. The
method combines and extends several previous methods proposed
for global key estimation. The local key progression over time is
modeled according to the harmonic and the metric structures. The
local key segmentation has a musical meaning and is independent
of the tempo of the piece. Encouraging results are obtained on a
set of classical pieces with complex harmony structure and show
that the key progression is clearly related to the harmonic and the
metric structures. Analysis of the results shows that additional
improvement of key segmentation may be achieved in the future
using a more complex model that includes key transitions parts.
We also plan to introduce chord functional analysis information to
improve the results.
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