Download Modeling the Frequency-Dependent Sound Energy Decay of Acoustic Environments with Differentiable Feedback Delay Networks
Differentiable machine learning techniques have recently proved effective for finding the parameters of Feedback Delay Networks (FDNs) so that their output matches desired perceptual qualities of target room impulse responses. However, we show that existing methods tend to fail at modeling the frequency-dependent behavior of sound energy decay that characterizes real-world environments unless properly trained. In this paper, we introduce a novel perceptual loss function based on the mel-scale energy decay relief, which generalizes the well-known time-domain energy decay curve to multiple frequency bands. We also augment the prototype FDN by incorporating differentiable wideband attenuation and output filters, and train them via backpropagation along with the other model parameters. The proposed approach improves upon existing strategies for designing and training differentiable FDNs, making it more suitable for audio processing applications where realistic and controllable artificial reverberation is desirable, such as gaming, music production, and virtual reality.
Download Training Neural Models of Nonlinear Multi-Port Elements Within Wave Digital Structures Through Discrete-Time Simulation
Neural networks have been applied within the Wave Digital Filter (WDF) framework as data-driven models for nonlinear multi-port circuit elements. Conventionally, these models are trained on wave variables obtained by sampling the current-voltage characteristic of the considered nonlinear element before being incorporated into the circuit WDF implementation. However, isolating multi-port elements for this process can be challenging, as their nonlinear behavior often depends on dynamic effects that emerge from interactions with the surrounding circuit. In this paper, we propose a novel approach for training neural models of nonlinear multi-port elements directly within a circuit’s Wave Digital (WD) discretetime implementation, relying solely on circuit input-output voltage measurements. Exploiting the differentiability of WD simulations, we embed the neural network into the simulation process and optimize its parameters using gradient-based methods by minimizing a loss function defined over the circuit output voltage. Experimental results demonstrate the effectiveness of the proposed approach in accurately capturing the nonlinear circuit behavior, while preserving the interpretability and modularity of WDFs.
Download Differentiable MIMO Feedback Delay Networks for Multichannel Room Impulse Response Modeling
Recently, with the advent of new performing headsets and goggles, the demand for Virtual and Augmented Reality applications has experienced a steep increase. In order to coherently navigate the virtual rooms, the acoustics of the scene must be emulated in the most accurate and efficient way possible. Amongst others, Feedback Delay Networks (FDNs) have proved to be valuable tools for tackling such a task. In this article, we expand and adapt a method recently proposed for the data-driven optimization of single-inputsingle-output FDNs to the multiple-input-multiple-output (MIMO) case for addressing spatial/space-time processing applications. By testing our methodology on items taken from two different datasets, we show that the parameters of MIMO FDNs can be jointly optimized to match some perceptual characteristics of given multichannel room impulse responses, overcoming approaches available in the literature, and paving the way toward increasingly efficient and accurate real-time virtual room acoustics rendering.
Download Modeling the Impulse Response of Higher-Order Microphone Arrays Using Differentiable Feedback Delay Networks
Recently, differentiable multiple-input multiple-output Feedback Delay Networks (FDNs) have been proposed for modeling target multichannel room impulse responses by optimizing their parameters according to perceptually-driven time-domain descriptors. However, in spatial audio applications, frequency-domain characteristics and inter-channel differences are crucial for accurately replicating a given soundfield. In this article, targeting the modeling of the response of higher-order microphone arrays, we improve on the methodology by optimizing the FDN parameters using a novel spatially-informed loss function, demonstrating its superior performance over previous approaches and paving the way toward the use of differentiable FDNs in spatial audio applications such as soundfield reconstruction and rendering.
Download Wave Digital Model of the MXR Phase 90 Based on a Time-Varying Resistor Approximation of JFET Elements
Virtual Analog (VA) modeling is the practice of digitally emulating analog audio gear. Over the past few years, with the purpose of recreating the alleged distinctive sound of audio equipment and musicians, many different guitar pedals have been emulated by means of the VA paradigm but little attention has been given to phasers. Phasers process the spectrum of the input signal with time-varying notches by means of shifting stages typically realized with a network of transistors, whose nonlinear equations are, in general, demanding to be solved. In this paper, we take as a reference the famous MXR Phase 90 guitar pedal, and we propose an efficient time-varying model of its Junction Field-Effect Transistors (JFETs) based on a channel resistance approximation. We then employ such a model in the Wave Digital domain to emulate in real-time the guitar pedal, obtaining an implementation characterized by low computational cost and good accuracy.