Download Distributed Single-Reed Modeling Based on Energy Quadratization and Approximate Modal Expansion Recently, energy quadratization and modal expansion have become popular methods for developing efficient physics-based
sound synthesis algorithms. These methods have been primarily
used to derive explicit schemes modeling the collision between
a string and a fixed barrier. In this paper, these techniques are
applied to a similar problem: modeling a distributed mouthpiece
lay-reed-lip interaction in a woodwind instrument. The proposed
model aims to provide a more accurate representation of how a musician’s embouchure affects the reed’s dynamics. The mouthpiece
and lip are modeled as distributed static and dynamic viscoelastic
barriers, respectively. The reed is modeled using an approximate
modal expansion derived via the Rayleigh-Ritz method. The reed
system is then acoustically coupled to a measured input impedance
response of a saxophone. Numerical experiments are presented.
Download Tunable Collisions: Hammer-String Simulation with Time-Variant Parameters In physical modelling synthesis, articulation and tuning are effected via time-variation in one or more parameters. Adopting hammered strings as a test case, this paper develops extended forms of such control, proposing a numerical formulation that affords online adjustment of each of its scaled-form parameters, including those featuring in the one-sided power law for modelling hammerstring collisions. Starting from a modally-expanded representation of the string, an explicit scheme is constructed based on quadratising the contact energy. Compared to the case of time-invariant contact parameters, updating the scheme’s state variables relies on the evaluation of two additional analytic partial derivatives of the auxiliary variable. A numerical energy balance is derived and the numerical contact force is shown to be strictly non-adhesive. Example results with time-variant tension and time-variant contact stiffness are detailed, and real-time viability is demonstrated.
Download On Iterative Solutions for Numerical Collision Models Nonlinear interactions between different parts of musical instruments present several challenges regarding the formulation of reliable and efficient numerical sound synthesis models. This paper focuses on a numerical collision model that incorporates impact damping. The proposed energy-based approach involves an iterative solver for the solution of the nonlinear system equations. In order to ensure the efficiency of the presented algorithm a bound is derived for the maximum number of iterations required for convergence. Numerical results demonstrate energy conservation as well as convergence within a small number of iterations, which is usually much lower than the predicted bound. Finally, an application to music acoustics, involving a clarinet simulation, shows that including a loss mechanism during collisions may have a significant effect on sound production.