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ABSTRACT

In physical modelling synthesis, articulation and tuning are ef-
fected via time-variation in one or more parameters. Adopting
hammered strings as a test case, this paper develops extended forms
of such control, proposing a numerical formulation that affords on-
line adjustment of each of its scaled-form parameters, including
those featuring in the one-sided power law for modelling hammer-
string collisions. Starting from a modally-expanded representation
of the string, an explicit scheme is constructed based on quadratis-
ing the contact energy. Compared to the case of time-invariant
contact parameters, updating the scheme’s state variables relies on
the evaluation of two additional analytic partial derivatives of the
auxiliary variable. A numerical energy balance is derived and the
numerical contact force is shown to be strictly non-adhesive. Ex-
ample results with time-variant tension and time-variant contact
stiffness are detailed, and real-time viability is demonstrated.

1. INTRODUCTION

The manipulation of variables is intrinsic to musical instrument
performance. For example, to produce a specific sound with a vi-
olin the musician controls the speed, normal force, and angle of
the bow as well as the position of fingers that press the string to
the fingerboard. In hammered string instruments, which is the tar-
get of the current study, such articulation is normally restricted to
the acceleration of keys that drive the hammer motion and the ad-
justment of tension during the tuning process, although in certain
instrument families, such as dulcimers, the striking position on the
string can also be varied.

In musical instrument modelling, articulation and tuning are
accomplished through variation over time of the relevant physical
parameters. This is exploited in physics-based synthesis for the ex-
ploration of the sound of acoustic instruments (of both existing and
modular design) across their parameter spaces [1]. Recently, spe-
cific attention has been given to on-line tuning of parameters that
are normally considered to remain constant [2, 3]. To contribute
towards facilitating such extended synthesis control, this paper sets
out to numerically model the interaction between a hammer and a
stiff string under time-variance of a non-redundant set of model
parameters. For the resulting algorithm to be of practical use, it
should be computationally efficient, numerically stable, and free
of audible artefacts. In addition, the response to driving forces
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and parameter manipulations should ideally be similar to what can
be expected in that regard from the underlying physical laws, and
parameter time-variance should not necessarily lead to large am-
plitude swings in the chosen output signal.

Solutions to various similar and related problems can be found
across the literature. Most notably, simulation of string vibrations
under time-varying tension (or an equivalent string length adjust-
ment) has been reported using digital waveguides [4], mass-spring-
damper systems [5], finite-difference methods [3], and modal syn-
thesis [6]. The challenge increases when nonlinearities are intro-
duced, perhaps most tellingly so when one-sided forces are in-
volved. For example, models in which a finger or other object
can be dynamically brought in contact with a string while also its
position along the string axis can be varied over time (e.g. [7, 8])
typically rely on an iterative solver to update the state variables,
which severely reduces the scope for parallelisation and real-time
implementation [9]. Similarly, in [2] all 29 parameters of a modal-
form string-bridge-plate model with nonlinear spring connections
were made tunable, but the use of an iterative solver meant that
for real-time audio rendering the parameter space and the rate of
change in parameters had to be empirically constrained to avoid
instability issues and artefacts. In [10] this issue was side-stepped
by casting the update equations in analytic form, but so far this
has been made to work only for a small subset of cases in which a
unity contact power law exponent applies.

Originating separately in Port-Hamiltonian form [11], the re-
cent emergence of energy quadratisation approaches, including the
Invariant Energy Quadratisation (IEQ) method [12] and the Scalar
Auxiliary Variable (SAV) method [13], has paved the way for nu-
merical simulation of nonlinear musical instruments vibrations with-
out the use of iterative solvers [14, 15], with specific scheme vari-
ants introduced for modelling collisions [16, 17]. The current pa-
per extends energy quadratisation to modelling lumped conserva-
tive nonlinearities under parameter time-variance, taking hammer-
string interaction as a case study. For completeness, additional
innovations that improve the handling of tension time-variance in
modal-form algorithms are introduced.

The paper is structured as follows. The hammer-string system
equations are outlined in Section 2, including a scaled form that is
modally expanded. The discretisation of the resulting equations is
presented in Section 3, with the update equations provided and also
featuring analyses of the key properties of the resulting algorithm.
The proposed formulation is then explored, exemplified, and tested
in Section 4 via a number of numerical experiments, followed by
concluding remarks in Section 5. Sound examples are available on
the accompanying github page1.

1https://github.com/mvanwalstijn/Tunable-Collisions
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2. HAMMER-STRING MODEL

In the following, ∂ty and ∂xy denote the partial derivatives with
respect to time t and string axis position x, respectively, and the to-
tal time derivative is written as dty. Considering a string of length
L, mass density ρ, cross section A, Young’s modulus E, moment
of inertia I interacting with a hammer of mass mh striking from
above, the equations governing the transversal string displacement
u = u(x, t) and hammer position uh = uh(t) can be written as
[18]:

ρA∂2
t u = T∂2

xu− EI∂4
xu+ θ(x)Fc, (1)

dt
{
mhdtuh

}
= Fe − Fc. (2)

The driving of the hammer is represented here with the excitation
force Fe = Fe(t), the specific form of which depends on the type
of instrument. For example, a simplified form of modelling Np

successive piano hammer strikes at time instants t = τl is:

Fe(t) =

Np∑
l=1

mhVe,l︸ ︷︷ ︸
pe,l

δ(t− τl) + Fstop,l(t), (3)

where Ve,l < 0 is an externally supplied hammer velocity param-
eter. In the absence of gravity, we emulate the hammer coming to
rest at uh = umax after bouncing back from the string, which is
represented in (3) by the forces Fstop,l(t) < 0; in practice, one
may achieve this by simply capping the hammer displacement at
uh = umax. Modelling the driving of the hammer in dulcimers or
clavichords would require different formulations of Fe(t).

The contact force in (1,2) is assumed to be non-hysteretic un-
der parameter constancy, and is defined with a power-law:

Fc = −κ [y]α+ ≤ 0, (4)

where [y(t)]+ = max(0, us(t)−uh(t)) is the effective inter-object
compression. For simplicity, the contact force is applied at a single
point, using θ(x) = δ(x−xh). Correspondingly, the displacement
of the string as ‘seen’ by the hammer is us(t) = u(xh, t). Simply
supported boundary conditions are assumed:

u(0, t) = ∂2
xu(0, t) = 0, u(L, t) = ∂2

xu(L, t) = 0, (5)

and initial conditions are set as

uh(0)=umax, dtuh(0)=0, u(x, 0)=0, ∂tu(0, x)=0.
(6)

As in previous studies (e.g. [10]), the force at the end of the string
is chosen as an appropriate output variable:

Fs(t) = −T∂xu(L, t) + EI∂3
xu(L, t). (7)

2.1. Scaled Form

The parameters ρ,A, andL are considered to remain constant over
time. To obtain a form of the system equations with fewer param-
eters, the following non-dimensional variables are introduced:

x̄ =
x

L
, ū =

u

L
, ūh =

uh

L
. (8)

Then, after substitution, the system can be written as

∂2
t ū = T̄

[
∂2
x̄ū− π−2B∂4

x̄ū
]
+ θ̄(x̄)F̄c, (9)

dt
{
m̄hdtūh

}
= F̄e − F̄c, (10)

Scaled-Form H-S Model DAC
Gout
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Figure 1: Schematic diagram of the scaled-form hammer-string
model.

where

F̄c = κ̄
[ ȳ︷ ︸︸ ︷
ūs − ūh

]α
+
, F̄e =

Np∑
l

p̄e,l︷ ︸︸ ︷
pe,l
ρAL2

δ(t− τl), (11)

m̄h =
mh

ρAL
, T̄ =

T

ρAL2
, B =

EIπ2

TL2
, (12)

κ̄ =
κLα−2

ρA
, x̄h =

xh
L
, θ̄(x̄) = δ(x̄− x̄h). (13)

The new parameter B is the inharmonicity factor [19], m̄h is the
hammer/string mass ratio, and ūs(t) = ū(x̄h, t). Analogously, we
may define

F̄s(t) =
Fs

ρAL2
= T̄

[
π−2B∂3

x̄ − ∂x̄
]
ū(1, t). (14)

2.2. Energy Quadratisation

The scaled-form contact force in (11) can be expressed as:

F̄c = −∂ȳΦ̄, Φ̄(ȳ) =
κ̄

α+ 1
[ȳ]α+1

+ , (15)

where the actual contact potential Φ (in Joules) relates to its scaled-
form counterpart as Φ = ρAL3Φ̄. Taking a split-potential energy
quadratisation approach [15], the scaled-form contact potential is
written in quadratic form with Φ̄ = 1

2
ψ2. Making use of the chain

rule, this allows writing the contact force as

F̄c = −ψ

gȳ︷︸︸︷
∂ȳψ = −ψdtψ − dtκ̄

gκ̄︷︸︸︷
∂κ̄ψ−dtα

gα︷︸︸︷
∂αψ

dtȳ
. (16)

Defining the auxiliary variable ψ as the positive square root of 2Φ̄,
the gradient variables gȳ , gα, and gκ̄ can be expressed directly as
functions of ȳ, α, and κ̄ as follows:

gȳ =
√

1
2
κ̄(α+ 1) [ȳ]α−1

+ , gκ̄ =

√
[y]α+1

+

2κ̄ (α+ 1)
(17)

gα =

√
1
2
κ̄ [ȳ]α+1

+

α+ 1

[
log

(
[ȳ]+ + ε

)
− 1

α+ 1

]
, (18)

where a positive constant of the size of the machine epsilon has
been included within the log term in (18) for handling the case
where [ȳ]+ approaches zero. Following similar principles as ap-
plied in IEQ and SAV methods, the numerical scheme will be con-
structed in explicit form by directly discretising the equations con-
tained within (16) and making use of the analytic expressions in
(17,18) to evaluate the gradient variables. A novel aspect is the
emergence of the additional gradient terms gα and gκ̄ due to time
variance in the power law parameters. It is worth noting that if ψ is
defined as −

√
2Φ̄, for consistency the terms gȳ , gκ̄ and gα would

also have to have a minus sign in front of the square root symbol.
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2.3. Parameter Control

Figure 1 shows the inputs and outputs of the scaled-form model.
The output gain Gout is needed to scale F̄s to the [−1, 1] input
range of the digital-to-analog converter. Each of the ten control
parameters in Figure 1 is considered to be adjustable on the fly, and
as such is treated as time-dependent. Four of those parameters (B,
m̄h, x̄h, and α) readily appear in the scaled-form model equations
(9-13). The parameters η0,1,2,3 are damping coefficients that will
be introduced in Section 2.4. This subsection explains how the
remaining two parameters (f̆1, K) are related to the scaled-form
model parameters. The tension parameter (T̄ ) can be calculated
directly from the string’s fundamental frequency f̆1 (in Hz) in the
absence of stiffness as T̄ = 4f̆2

1 . To enable independent control
of the effective stiffness (through K) and the ‘contact nonlinearity’
(through α), κ̄ has been re-parameterised as follows:

κ̄ = (α+ 1)K
(

K
Φ̄r

)α

. (19)

where Φ̄r denotes a (constant-over-time) scaled-form reference po-
tential that represents the amount of contact energy that can ap-
proximately be expected2. This is exemplified in Figure 2. Exam-
ple values for the control parameters, which were transcribed from
[20], are listed in Table 1. Where needed, the string constants ρA
and L are used for un-scaling displacements, forces, or energies,
but they do not otherwise feature within the scaled-form model
that forms the basis for numerical simulation.

7y

7 )

(a)

, = 1
, = 2
, = 4

7y

7 )

(b)

K = 1
2Kr

K = Kr

K = 2Kr

Figure 2: Contact potential curves for (a): a range of α values
with K = Kr and (b): a range of K values and α = 2. In both
subfigures, the horizontal dashed line indicates the scaled-form
reference potential (Φ̄r).

2.4. Modal Expansion

For the boundary conditions in (5), we may expand the string dis-
placement as

ū(x̄, t) =

M∑
i=1

√
2 sin(iπx̄(t))︸ ︷︷ ︸
vi(x̄(t))

ũi(t) = [v(x̄)]Tu, (20)

where vi(x̄(t)) and ũi(t) are the modal shape function and the
modal displacement for the ith mode, and v(x̄) and u are the
respective column vector representations (with time dependence
dropped in the notation). Substituting (20) into (9), multiplying
with the basis functions, and spatially integrating from x̄ = 0 to

2The K values in Table 1 have been transcribed using Φ̄r ≈ 0.75/L2,
which is a representative value of the average piano key, derived from set-
ting the unscaled version Φr equal to the kinetic energy of a hammer with
m̄h = 0.75 and dtuh = −1.41 m/s.

Table 1: Scaled-form model parameter values (transcribed from [20]).

piano C2 piano C4 piano C7
f̆1 [Hz] 65.4 262 2093
B 7.4× 10−5 3.77× 10−4 8.6×10−3

η0 [s−1] 0.5 0.5 0.5
η1 [s−1] 0.01 0.01 0.1
η2 [s−1] 0.0 0.0 0.0
η3 [s−1] 10−6 10−6 10−4

m̄h 0.14 0.75 4.71
K [s−2] 335 2560 4.3×104

α 2.3 2.5 3.0
x̄h 0.12 0.12 0.0625
ρA [kg m−1] 18.4×10−3 6.3×10−3 5.2×10−3

L [m] 1.90 0.62 0.09

x̄ = 1 then leads to a set of coupled ordinary differential equations
which may be expressed in vector form as

d2tu+Rdtu+Ku = hF̄c, (21)

where h = v(x̄h) and K is an M ×M diagonal matrix with the
non-zero elements

Ki,i = i2π2T̄
(
1 + Bi2

)
. (22)

Initally, since there is no string damping in (9), the M ×M damp-
ing matrix R contains only zeros. String damping can be intro-
duced in polynomial form by setting the diagonal elements of R
to:

Ri,i = 2
(
η0 + η1iπ + η2i

2π2 + η3i
3π3) . (23)

Of particular relevance is the case where η2 = 0, which can be
shown (see [2]) to align well with the experimentally validated
damping formulation by Woodhouse [21]. The ith mode frequency
for free vibration (i.e. F̃i = 0) then is

ωi =

√
Ki,i − 1

4
R2

i,i, (24)

which takes on an imaginary value in case of overdamping. In
modal form, the string displacement at the contact point can be
written as us = hTu, and the string force in (14) becomes

F̄s(t) = −
M∑
i=1

iπT̄ (t)
[
1 + B(t)i2

]
(−1)i︸ ︷︷ ︸

wi(t)

ũi(t) = −wTu.

(25)
The direct dependence of wi on T̄ can lead to large swings in the
output amplitude when time-varying the string tension. The need
for output gain adjustments can be significantly reduced by replac-

ing wi(t) with the adjusted output weights ẇi(t) =
√

T̄ (0)

T̄ (t)
wi(t).

2.5. Energy Balance and Conserved Quantities

An energy balance equation can be obtained by pre-multiplying
(21) with (dtu)

T, multipling (10) with dtūh, and adding the re-
sulting equations, yielding

dtH̄ = 1
2
uT(dtK)u− (dtu)

TR dtu− (dth)
TuF̄c + dtūhF̄e

− (dtūh)
2dtm̄h + ψ (gκ̄dtκ̄+ gαdtα) , (26)

in which the scaled-form Hamiltonian H̄ takes the form :

H̄ =
(dtu)

Tdtu

2
+

uTKu

2
+
m̄h(dtūh)

2

2
+
ψ2

2
≥ 0. (27)
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From (10) and (26), it is immediately clear that the scaled-form
hammer momentum p̄h = m̄hdtūh and system Hamiltonian H̄
are conserved under specific conditions:

dtp̄h = 0 if
(
F̄e, F̄c = 0

)
, (28)

dtH̄ = 0 if
(
F̄e, η0, η1, η2, η3 = 0,

∂tT̄ , ∂tB, ∂tm̄h, ∂tκ̄, ∂tα, ∂tx̄h = 0
)
. (29)

The numerical scheme will be constructed such that the discrete
counterparts of H̄ and p̄h are conserved under the same conditions.

3. NUMERICAL FORMULATION

3.1. Difference and Averaging Operators

The numerical model will evaluate variables and parameters at
discrete-time instants tn = n∆t. The usual form un is employed
to denote the approximation to u at time t = n∆t. The following
shift operators are defined:

ϵt+u
n = un+1

2 , ϵt−u
n = un−1

2 . (30)

Elemental temporal difference and averaging operators can then be
constructed as

δt =
ϵt+ − ϵt−

∆t
, µt =

ϵt+ + ϵt−
2

, δt· =
ϵ2t+ − ϵ2t−
2∆t

, (31)

δt+ =
ϵ2t+ − 1

∆t
, δt− =

1− ϵ2t−
∆t

µt· =
ϵ2t+ + ϵ2t−

2
. (32)

where we can identify several equivalences (e.g. δt· = δtµt).
Finite-difference approximations are achieved by either combin-
ing or directly applying these elemental operators, e.g.

δ2t u
n =

un+1 − 2un + un−1

∆2
t

= ∂2
t u(n∆t) +O(∆2

t ), (33)

µ2
tu

n =
un+1 + 2un + un−1

4
= u(n∆t) +O(∆2

t ), (34)

δt·u
n =

un+1 − un−1

2∆t
= ∂tu(n∆t) +O(∆2

t ). (35)

The following product identities can be derived for arbitrary grid
functions un, qn:

δt
{
(δtu

n)2
}
=2δt·u

nδ2t u
n, δt

{
(µtu

n)2
}
=2δt·u

nµ2
tu

n, (36)

δt{µtq
nδtu

n} δtun= 1
2
δt
{
µtq

n(δtu
n)2

}
+ δt·q

nδt+u
nδt−u

n,
(37)

which is useful for the purposes of numerical energy analysis.

3.2. Discretisation

Let un be a column vector holding the modal displacements ũn
i ,

i = 1, 2, · · ·M . The size of this vector (i.e. M ) will not be varied
on-line. Taking into account the need to avoid both numerical dis-
persion and mode aliasing, the mode dynamics in (21) with time-
varying parameters can be discretised in vector form as follows:

δ2tu
n + R̂nδt·u

n + µ2
t K̂

nµ2
tu

n = F̄n
c µt·h

n, (38)

where the non-zero elements of the adjusted diagonal matrices R̂n

and K̂n are
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Figure 3: The mode frequency soft-clipping function F(ω) (left)
and the suppression weight function W(ω) (right) for ∆t =
1/44100. The dashed line indicates the Nyquist frequency
(π/∆t), and the dotted line represents the cut-off frequency (ωa).

R̂n
i,i =

2bni
∆t

, K̂n
i,i =

4

∆2
t

ani . (39)

The real-valued coefficients in (39) are:

ani =
1−

(
Υn

+,i +Υn
−,i

)
+Υn

+,iΥ
n
−,i

1 +
(
Υn

+,i +Υn
−,i

)
+Υn

+,iΥ
n
−,i
, (40)

bni =
2− 2Υn

+,iΥ
n
−,i

1 +
(
Υn

+,i +Υn
−,i

)
+Υn

+,iΥ
n
−,i
, (41)

featuring the complex-conjugate pair

Υn
±,i = exp

{
±jF(ωn

i )∆t − 1
2
Rn

i,i∆t

}
, (42)

where j =
√
−1 and

F(ω) =

{
ω : ω2 < ω2

a

ζ arctan[ζ−1(ω − ωa)] + ωa : otherwise
(43)

is a function that ‘soft-clips’ the mode frequencies (see the plot on
the left-hand side of Figure 3), as such preventing aliased mode
frequencies. Here ωa is an appropriate ‘cut-off frequency’ chosen
below the Nyquist frequency (ωa = 0.9π/∆t is used throughout
the paper), and ζ = 2/∆t − 2ωa/π. Since the ‘out-of-range’
modes will have incorrect resonance frequencies, they need to be
suppressed in the calculation of both ūs and F̄s. This can be
achieved by calculating the elements of the vectors hn and wn as
hn
i = W(ωn

i ) ·vi(x̄nh) andwn
i = W(ωn

i ) ·wi(n∆t), respectively,
where W(ω) is a smooth weight function

W(ω) =
1

1 + [Re(ω)/ωa]200
, (44)

which strongly suppresses frequencies larger than ωa (see the plot
on the right-hand side of Figure 3). Using (24), it can be shown
that |Υn

±,i| ≤ 1 for both under- and over-damped modes. It fol-
lows from (40,41) that ani ≥ 0 and bni ≥ 0, meaning that the di-
agonal elements of R̂n and K̂n are guaranteed non-negative. For
constancy in the mode frequencies ωn

i , the above discretisation re-
sults into a scheme free of numerical dispersion and attenuation,
similarly to the modal-form schemes proposed in previous studies
[22, 2]. Expanding (38), one may derive the update form

un+1 = un−1 +Cnµt·h
nF̄n

c − 2zn, (45)

with
zn = 1

2

[
Bnun−1 −Anun

]
, (46)
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where the elements of the diagonal matrices An, Bn, and Cn are:

An
i,i =

2− 2µ2
ta

n
i

1 + µ2
ta

n
i + µ2

t b
n
i

, (47)

Bn
i,i =

2 + 2µ2
ta

n
i

1 + µ2
ta

n
i + µ2

t b
n
i

, (48)

Cn
i,i =

∆2
t

1 + µ2
ta

n
i + µ2

t b
n
i

. (49)

The hammer dynamics in (10) are discretised with:

δt
{
µtm̄

n
hδtū

n
h

}
= F̄n

e − F̄n
c . (50)

Setting ξnh = ∆2
t/µtm̄

n+1
2

h and γn = µtm̄
n−1

2
h /µtm̄

n+1
2

h , this can
be written as

ūn+1
h = ūn−1

h − ξnh F̄
n
c − 2znh , (51)

where
znh = 1

2
(1 + γn)

(
ūn−1
h − ūn

h

)
− 1

2
ξnh F̄

n
e . (52)

By pre-multiplying (45) with (hn)T and subtracting (50), the fol-
lowing scalar equation is obtained:

ȳn+1− ȳn−1︸ ︷︷ ︸
sn

=
[
(hn)TCnµt·h

n+ ξnh

]
︸ ︷︷ ︸

ξn

F̄n
c − 2

[
(hn)Tzn− znh

]
︸ ︷︷ ︸

zn

.

(53)
The contact force F̄n

c as written in quadratised form in (16) is dis-
cretised with:

F̄n
c = −(µtψ

n) · gnȳ ,
δtψ

n − gnκ̄δt·κ̄
n − gnαδt·α

n

δt·ȳn
= gnȳ ,

(54)
where we can substitute 2∆tδt·ȳ

n = sn. From the second equa-
tion, a separate update of the auxiliary variable is found as

ψn+1
2 = ψn−1

2+ 1
2
gnȳ s

n+ 1
2

[
gnκ̄ (κ̄

n+1− κ̄n−1)+ gnα(α
n+1− αn−1)

]︸ ︷︷ ︸
χn

.

(55)
Substituting the first equation in (54) into (53) we then can, making
use of (55), obtain the explicit solution

sn = −
2zn + ξn

(
ψn−1

2 + 1
2
χn

)
gnȳ

1 + 1
4
ξn(gnȳ )

2 , (56)

where it is seen that the denominator in (56) is guaranteed posi-
tive, hence solution existence is ensured. Under the assumption
that the auxiliary variable remains non-negative during simulation,
the gradient variables gnκ̄ and gnα can be calculated directly as per
equations (17,18). The remaining gradient variable gnȳ then has to
be constrained such that ψn+1

2 ≥ 0, which in the time-variant case
translates to satisfying the quadratic inequality

1
4
ψn−1

2 ξn(gnȳ )
2 + zngnȳ −

(
ψn−1

2 + χn
)
≤ 0. (57)

This leads to the evaluation of gnȳ in branched form as given in
the Appendix. Once sn has been calculated, the auxiliary variable
is updated with (55). The [.]+ operator is subsequently applied to

ensure that the value of ψn+1
2 does not become ever so slightly

negative due to finite-precision errors. Next, the contact force F̄n
c

is calculated with (54), after which the state variables u and uh

can be updated with (45) and (50), respectively. Finally, the output
signal is calculated with F̄n

s = (wn)Tun. Note that the matrices
K̂n and R̂n are not calculated within the algorithm; this is needed
only in instances where one wants to track the evolution of the
system energy. The update of the modal displacements requires
only the elements expressed in (47-49).

3.3. Non-Adhesive Contact Force

For the explicit scheme presented above, guaranteed non-adhesion
can be shown starting from the inequality ψn+1

2 ≥ 0 for all n,
from which it follows that µtψ

n ≥ 0. From (61) we have that
g̀nȳ ≥ 0 by definition. Further, given that the numerator of (62) is
non-negative, it follows that ġnȳ ≥ 0. Seen together with (60) this
means that gnȳ ≥ 0, and therefore that F̄n

c = −µtψ
n gnȳ ≤ 0.

3.4. Energy Balance and Conserved Quantities

From (50) it is immediately clear that the numerical hammer mo-

mentum p̄
n+1

2
h = µtm̄

n+1
2

h δtū
n+1

2
h is conserved when no forces act

upon the hammer. A discrete energy balance can be derived by
pre-multiplying (38) with (δt·u

n)T, (50) with δt·un
h and adding

the resulting equations:

δtH̄
n= 1

4
(µtu

n+1
2 )Tδt·K̂

nµtu
n+1

2 + 1
4
(µtu

n−1
2 )Tδt·K̂

nµtu
n−1

2

− (δt·u
n)TR̂nδt·u

n + δt·ū
n
h F̄

n
e − δt·m̄

n
hδt+ū

n
hδt−ū

n
h

− F̄n
c (δt·h

n)Tµt·u
n+ µtψ

n(gnκ̄δt·κ̄
n+ gnαδt·α

n) , (58)

H̄n+1
2 = 1

2
(δtu

n+1
2 )Tδtu

n+1
2 + 1

2
(µtu

n+1
2 )TµtK̂

n+1
2 µtu

n+1
2

+ 1
2
µtm̄

n+1
2

h (δtū
n+1

2
h )2 + 1

2
(ψn+1

2 )2 ≥ 0. (59)

Here we made use of the product identities in (36-37). It follows
directly that the numerical energy H̄n+1

2 is conserved for constant
parameters and no damping or external force. Further, the terms on
both sides of (58) are consistent approximations to the correspond-
ing terms in (26), so we can expect the simulation to exhibit en-
ergy behaviour under parameter time-variance that approximates
that of the underlying continuous-domain model (see Figure 6 for
a numerical verification).

3.5. Blockwise Parameter Updates & Linear Interpolation

Under the assumption that the control parameters vary over time
relatively slowly, they can be updated every Nb samples, such that
the control rate is Nb times lower than the audio sampling rate,
in which case the parameter signals are assumed to be bandlim-
ited in the sense of containing no frequency components above
f = 1/(2Nb∆t). Given that one round of updating of the model
parameters is computationally more expensive than one time step
of updating the state variables, such a blockwise parameter update
form yields significant computational savings. To alleviate audible
artefacts, the following parameters and coefficients are linearly in-
terpolated over each block, at very low cost: m̄h, κ̄, α, hi, ai, bi.
The coefficients ξh and γh as well as the diagonals of A, B, and
C are updated at each time step using the aforementioned linearly-
interpolated values.
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4. NUMERICAL EXPERIMENTS

4.1. Contact Force Signals with Static Parameters

Before exploring parameter time-variance, we first verify the cor-
rectness of the algorithm and its implementation for the case of
constant parameters. Figure 4 shows the contact force signal for
three hammer striking velocities, using a standard audio rate (i.e.
∆t = 1/44100 s). The resulting waveforms are similar to those
obtained in previous studies (e.g. [20]).

1 2 3 4 5 6 7 8 9 10 11
time (ms)

0

5

10

15

!
F

c
(N

)

7pe = !3:5 s!1 [dtuh = !2:89 m/s]
7pe = !1:4 s!1 [dtuh = !1:16 m/s]
7pe = !0:8 s!1 [dtuh = !0:66 m/s]

Figure 4: Contact force signals for a C4 string with static param-
eters. For each hammer velocity, the black dashed line indicates
the exact solution as approximated with 24 times oversampling.

4.2. String Tuning

Of special interest is the behaviour of the algorithm under time-
varying tension, because this involves string modes moving out of
and into the normal frequency range of interest. Figure 5 shows
the amplitude normalised spectrograms of four simulation output
signals. In each simulation, the string was excited with a hard
hammer (K = 100000 s−2, α = 1.2) at t = 0.2 s, and the pa-
rameter f̆1 was subsequently increased upwards in a linear fashion
by a factor of 1.5, and then linearly decreased back to its origi-
nal value. The time step is ∆t = 1/(OF · 44100) s, where OF
is the oversampling factor. The top left plot, obtained with two
times oversampling, can be considered as the nominally correct
result. For wider comparison we also include the result obtained
with the dynamic grid model [3], for which Nb = 1. Visible in
the top right plot (Nb = 1) is the suppression of the out-of-range
modes according to the weight function W(ω). High-frequency
artefacts appear with Nb = 128 (bottom left plot), but these are
generally more than 60 dB below the level of the partial tones, and
as such barely or not audible. A noticeable difference with the
FD dynamic grid result is that the mode frequencies evolve in a
more regular fashion, and as such the proposed methodology does
not rely on frequency-dependent damping and/or oversampling to
mask audible artefacts. Secondly, with the modal-form algorithm
the modes that drift out of range when the tension increases are
‘pulled back’ into range once the tension is reduced.

4.3. Energy and Output Amplitude

A similar experiment is conducted here, this time with no string
damping, to investigate the behavour of the output amplitude and
the numerical energy under time-varying tension. Figure 6(b) shows
the output signal as calculated with wi and ẇi, respectively, con-
firming that the use of adjusted output weights helps reducing out-
put amplitude swings. Figure 6(c) compares the corresponding nu-
merical energy evolution as calculated with oversampling factors

Figure 5: Spectral evolution of the string force signal under time-
varying tension. The model parameters are f̆1 = 1000 Hz, B =
2.55×10−6, η0 = 0.5 s−1, η1 = 0 s−1, η2 = 0.0001 s−1, η3 = 0
s−1, m̄h = 0.3, x̄h = 1/23.

OF = 1 and OF = 24, in both cases using M = 60. The close-
ness of these two curves demonstrates that the numerical energy
balance remains approximately correct in the presence of mode-
frequency soft-clipping (which occurs only for OF = 1 here) and
other approximation errors.

4.4. Time-Varying Contact Parameters

Among less conventional forms of parameter time-variance, the
terrain of on-the-fly adjustment of the contact parameters seems
particularly uncharted. To investigate how the algorithm handles
such time-variance, single hammer-string collisions were simu-
lated in which the effective stiffness parameter K was set to either
rapidly increase (see the left-hand side plots of Figure 7) or rapidly
decrease (see the right-hand side plots of Figure 7) during contact.
As can be seen in the bottom plots, time-variance in K leads to
hysteresis in the force-vs-compression curve. For increasing K,
the hysteresis is ‘inverted’ (i.e. in the opposite direction to what is
normally observed with hysteresis in piano hammers due to loss
mechanisms). The main take-away from these results is that fast
time-variance in K – and indeed in α, which was also tested but
not shown here – can be simulated without artefacts.

4.5. Computational Efficiency

To asses the viability of real-time implementation, the real-time
factor (RTF), which is defined here as a measure of how much real
time passes with the computation of one second of audio output,
was recorded for a range of Nb and M values. The piano C2 pa-
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Figure 6: Simulation with time-varying tension and no damping.
Top: fundamental frequency profile. Middle: output waveforms
for OF = 1. Bottom: system energy. The parameters are those for
a piano C4 string, with ∆t = 1/(OF · 44100) s and Nb = 32.

rameters listed in Table 1 were used in the simulations, applying
regular hammering with randomised hammer velocities across 0.5
s simulation time. For each set (Nb, M ), the RTF was calculated
as an average over 50 simulations. The computations were per-
formed in Matlab on an Intel i7-6700 CPU. As can be seen from
the results presented in Figure 8, the RTF remains below 0.75 for
block sizes of 32 and above with up to 1000 string modes. For ref-
erence, the number of modes needed to cover the audio range for
an A0, which is the lowest key on standard pianos, is about 300.
Because of the uncoupled structure of the modal update form, sig-
nificant efficiency gains compared to Matlab implementations can
be made utilising parallel processing methods in optimised C++
implementations. Examples include the use of Advanced Vector
Extensions (see, e.g. [2]).

5. CONCLUSION

A numerical scheme for simulating hammer-string interaction with
time-varying parameters has been formulated in modal form. As
part of adapting the energy quadratisation approach to modelling
collisions under parameter time variance, two new gradient vari-
ables were introduced. The physical correctness of the algorithm
is underpinned by the numerical contact force being provably non-
adhesive and by the existence of a numerical energy balance, the
form of which directly mirrors that of the continuous-domain model.

With respect to handling time-varying string tension, modes
with frequencies that exceed the available frequency bandwidth
for a given time step remain active within the numerical model,
with their frequencies adjusted to fall into a narrow frequency band
just below the Nyquist frequency. These out-of-range modes con-
tinue to contribute to the overall system energy (hence a numerical
energy balance exists) but are suppressed in the calculation of the
output signal and of the string displacement at the hammer position
and as such do not interfere with the sound synthesis process while
they are out of range. In addition, a pragmatic form of re-scaling
of the output force signal under time-variance in the string tension
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Figure 7: Simulation with time-variation in the contact stiffness
parameter (K). Left: increasing stiffness. Right: decreasing stiff-
ness. In each subplot, the dashed line indicates the simulation with
constant K. The parameters are those for a piano C4 string, with
∆t = 1/44100 s and Nb = 32.

was introduced to avoid large amplitude fluctuations, meaning a
much reduced need to make adjustments to the output gain.

The off-line numerical experiments conducted within this work
indicate that the algorithm’s computational load is sufficiently small
for real-time implementation and that no audible artefacts arise
under parameter time-variance. More exhaustive testing on the
latter point is still required though, and this is perhaps best done
through on-line control. A real-time controlled implementation
will also provide better opportunities to explore the possibilities
that the proposed model can offer as the sound engine of a (live-
performable) virtual-acoustic musical instrument.
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8. APPENDIX: BRANCHED EVALUATION OF gnȳ

For the update equations (55,56), the gradient variable gnȳ is calcu-
lated as

gnȳ =

 min(g̀nȳ , ġ
n
ȳ+) : ȳn > 0

ġnȳ+ : ȳn < 0 & ȳn−1 > 0
0 : otherwise

, (60)

where g̀nȳ denotes the nominal value according to (17):

g̀nȳ = gȳ(ȳ
n) =

√
1
2
κ̄n(αn + 1) [ȳn]α

n−1
+ . (61)

The term ġnȳ+ is the positive root of the quadratic term on the left-
hand side of (57) that needs to remain non-positive to ensure that
ψn+1

2 ≥ 0:

ġnȳ+ = 2

−zn +

√
(zn)2 + ξnψn−1

2

[
ψn−1

2 + χn
]
+√

εξn(zn)2 + (ξnψn−1
2 )2

. (62)

The inclusion of the term εξn(zn)2 in the denominator, where
ε > 0 is of the order of the machine epsilon, helps ensure that
the correct solution is found for ψn−1

2 → 0. The operator [.]+ is
applied within the square root to ensure a real root and that ġnȳ ≥ 0.
The middle branch in (60) effectively sets ψn+1

2 to zero at the end
of contact, as such altogether avoiding any spurious non-zero con-
tact force values at time instances where there is no contact.
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