Download Differentiable Active Acoustics - Optimizing Stability via Gradient Descent
Active acoustics (AA) refers to an electroacoustic system that actively modifies the acoustics of a room. For common use cases, the number of transducers—loudspeakers and microphones—involved in the system is large, resulting in a large number of system parameters. To optimally blend the response of the system into the natural acoustics of the room, the parameters require careful tuning, which is a time-consuming process performed by an expert. In this paper, we present a differentiable AA framework, which allows multi-objective optimization without impairing architecture flexibility. The system is implemented in PyTorch to be easily translated into a machine-learning pipeline, thus automating the tuning process. The objective of the pipeline is to optimize the digital signal processor (DSP) component to evenly distribute the energy in the feedback loop across frequencies. We investigate the effectiveness of DSPs composed of finite impulse response filters, which are unconstrained during the optimization. We study the effect of multiple filter orders, number of transducers, and loss functions on the performance. Different loss functions behave similarly for systems with few transducers and low-order filters. Increasing the number of transducers and the order of the filters improves results and accentuates the difference in the performance of the loss functions.
Download DataRES and PyRES: A Room Dataset and a Python Library for Reverberation Enhancement System Development, Evaluation, and Simulation
Reverberation is crucial in the acoustical design of physical spaces, especially halls for live music performances. Reverberation Enhancement Systems (RESs) are active acoustic systems that can control the reverberation properties of physical spaces, allowing them to adapt to specific acoustical needs. The performance of RESs strongly depends on the properties of the physical room and the architecture of the Digital Signal Processor (DSP). However, room-impulse-response (RIR) measurements and the DSP code from previous studies on RESs have never been made open access, leading to non-reproducible results. In this study, we present DataRES and PyRES—a RIR dataset and a Python library to increase the reproducibility of studies on RESs. The dataset contains RIRs measured in RES research and development rooms and professional music venues. The library offers classes and functionality for the development, evaluation, and simulation of RESs. The implemented DSP architectures are made differentiable, allowing their components to be trained in a machine-learning-like pipeline. The replication of previous studies by the authors shows that PyRES can become a useful tool in future research on RESs.