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ABSTRACT

Active acoustics (AA) refers to an electroacoustic system that ac-
tively modifies the acoustics of a room. For common use cases, the
number of transducers—loudspeakers and microphones—involved
in the system is large, resulting in a large number of system pa-
rameters. To optimally blend the response of the system into the
natural acoustics of the room, the parameters require careful tun-
ing, which is a time-consuming process performed by an expert.
In this paper, we present a differentiable AA framework, which al-
lows multi-objective optimization without impairing architecture
flexibility. The system is implemented in PyTorch to be easily
translated into a machine-learning pipeline, thus automating the
tuning process. The objective of the pipeline is to optimize the
digital signal processor (DSP) component to evenly distribute the
energy in the feedback loop across frequencies. We investigate the
effectiveness of DSPs composed of finite impulse response filters,
which are unconstrained during the optimization. We study the ef-
fect of multiple filter orders, number of transducers, and loss func-
tions on the performance. Different loss functions behave similarly
for systems with few transducers and low-order filters. Increasing
the number of transducers and the order of the filters improves re-
sults and accentuates the difference in the performance of the loss
functions.

1. INTRODUCTION

Active acoustics (AA) systems include sound reinforcement and
reverberation enhancement systems [1]. Usually, they comprise
several microphones and loudspeakers distributed in a closed space
and a digital signal processor (DSP). Feedback is an AA system’s
inherent component: the signal produced by a sound source is
picked up by the microphones, processed in the DSP, played back
in the room by the loudspeakers, and picked up again by the mi-
crophones.

We can divide AA systems into two categories [1, 2, 3]: in-
line systems that suppress the feedback with the use of directional
microphones placed close to the sound source and non-inline, or
regenerative, systems, that use feedback as their working princi-
ple. Inline systems work far from the stability limit, and hence
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they use long impulse responses (IRs) to produce artificial rever-
beration. Regenerative systems, on the other hand, do not suppress
feedback and can generate long reverberation by working close to
the stability limit allowing the feedback to generate many repeti-
tions of the input signal. Thus, they can also employ filters with
short IRs. Usually, commercial systems use a hybrid approach
comprising both an inline and a regenerative component [2, 4, 5].

Due to the feedback nature of AA systems, stability is one of
the crucial considerations in system design and use [1, 2, 6, 7]. An
unstable feedback loop results in the signal amplitude increasing
at each loop iteration, up to the point of transducer saturation [1].
To avoid such a state, the gain that can be safely applied to the
system is constrained by the gain before instability (GBI) [1, 3].
Approaching the GBI, however, may still result in audible arti-
facts in the enhanced sound, such as strong coloration in the form
of long-ringing tones and modulation [1, 8]. The ringing tones
theoretically coincide with the frequencies at which the feedback
loop’s signal amplification is stronger [6, 7]. Therefore, the design
and implementation of AA systems benefit from having the energy
of the feedback loop evenly distributed across frequencies [8, 9].
An AA system with an identical stability threshold for all frequen-
cies can work closer to the GBI without coloration affecting the
feedback loop. Upon reaching the GBI, such a system would be-
come unstable at all frequencies at once.

In the literature, numerous techniques aim to maximize the
AA systems’ performance in terms of control over reverberation
time (RT) and/or gain, simultaneously maintaining their stabil-
ity and minimizing artifacts. The state of the art includes trans-
ducer positioning and directivity investigation [10, 11], equaliza-
tion of transducer gains [12, 13, 14], adaptive feedback cancella-
tion [15, 16], spectrum decorrelation techniques [8, 17, 18, 19],
and time-varying reverberators [3, 20, 21, 22]. The success in
providing high GBI and good-quality sound is strongly method-
dependent [23]. In recent years, research explored geometric and
perceptually-motivated approaches [5, 24, 25] to assess the quality
of AA systems. However, they all share a major drawback: they
require fine-tuning [3, 14], which is time-inefficient and demands
expert knowledge, especially in systems with a high number of
channels and complex DSPs.

A way to avoid the laborious manual tuning of AA system
parameters is through automation. In this paper, we propose a
PyTorch formulation of AA that allows for automatic differen-
tiation of the DSP. The differentiable DSP (DDSP) can be opti-
mized towards a target in the same fashion as a machine learning
pipeline [26, 27]. We restrict the optimization design to regenera-
tive AA systems with short DSP finite impulse response (FIR) fil-
ters, and we test the framework using several setups with different
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Figure 1: Block diagram representing an AA system in a real-
world scenario. The signal routing is depicted by solid arrows with
annotations of the involved IRs.

filter orders, loss functions, and transducer configurations. In the
end, we test the application of this approach to an inline system.

The paper is organized as follows: Section 2 offers background
information on the stability of AA systems; Section 3 describes
the proposed framework and the optimization algorithm; Section
4 shows the results of comparing system stability between non-
optimized and optimized DSP; and Section 5 concludes the article.

2. PROBLEM DEFINITION

Figure 1 shows the signal flow in an AA system’s feedback loop.
The sound field is generated in the physical room, where the trans-
ducers, i.e., nM microphones and nL loudspeakers, are positioned.
The virtual room is the DSP, which digitally enhances the room
acoustics. At time sample n, any sound xrns produced in the
physical room is picked up by the microphones, while the signal
yrns received at any position in the audience is the superimpo-
sition of the contributions from the physical room and the AA
system. In the physical room, HSArns P R, HSMrns P RnM ,
and HLArns P RnL are the room IRs (RIRs) between the sound
source and audience position, the sound source and the system’s
microphones, the systems’ loudspeakers and audience position,
respectively. The RIRs HLMrns P RnMˆnL from the loudspeak-
ers to the microphones are the system’s feedback paths. In AA
systems, any linear and time-invariant DSP results in a matrix of
IRs, VMLrns P RnLˆnM , from every microphone to every loud-
speaker, and an amplification gain G. In this work, VMLrns does
not contain any internal feedback path, and therefore it is essen-
tially a matrix of FIR filters.

The DSP transfer functions (TFs) from microphones to loud-
speakers are VMLpzq “ ZtVMLrnsu and the physical room trans-
fer functions (RTFs) are HLMpzq “ ZtHLMrnsu. Z denotes the
z-transform and z “ σeȷω is a complex number where e is Euler’s
number, ȷ is the imaginary unit, and σ and ω are the radius and
the phase, respectively, of z on the complex plane. An AA sys-
tem’s stability is analyzed along the unit circle, and hence, from
now on, we consider σ “ 1, and we discuss stability with re-
spect to the discrete normalized angular frequency ωk P r0, πs for

k “ 0, . . . ,K ´ 1.
An AA system’s feedback loop iteration is determined by the

product of the feedforward TFs and the feedback RTFs:

FMMpeȷωk q “ G HLMpeȷωk qVMLpeȷωk q, (1)

where FMMpeȷωk q contains the TFs from any microphone to any
microphone. The amplification gain G is a real scalar multiplier,
and thus, for this work, we conveniently choose G “ 1.

Typically, all elements of FMMpeȷωk q are non-zero, meaning
that all the channels in the system are coupled. An equivalent
system with decoupled channels—i.e. eigenchannels—can be ob-
tained by applying Eigen-decomposition to FMMpeȷωk q [28]:

FMMpeȷωk q “ Qpeȷωk qΛpeȷωk qQ´1
peȷωk q, (2)

where Qpeȷωk q is the matrix of the system’s eigenvectors, and
Λpeȷωk q is a diagonal matrix containing the system’s eigenvalues
tλipe

ȷωk qu, for i “ 1, 2, . . . , nM. By applying Eq. (2) to each
frequency ωk we obtain the evolution of the eigenvalues over fre-
quency. We refer to the complete collection of all system’s eigen-
values, across both frequency and eigenchannels, with the term
eigenvalue set and to the collection of the magnitude values of the
eigenvalue set with the term eigenvalue magnitude distribution.

According to Nyquist’s stability criterion [6, 7], the system is
stable if all of the eigenvalues in the eigenvalue set have a real part
lower than 0 dB or a non-zero imaginary part. A more stringent
but safer and simpler approach is to consider a system stable if
and only if the whole eigenvalue magnitude distribution is below
0 dB [19, 28]. Thus, we can determine the AA system stability
by analyzing only the eigenvalue magnitude distribution. How-
ever, we know that for each frequency ωk, the eigenvalue with the
largest magnitude is the most likely to invalidate the stability con-
dition. Therefore we can simplify the stability analysis by consid-
ering, for each frequency ωk, only the eigenvalue with the largest
magnitude across channels:

λmaxpeȷωk q “ max
i

t|λipe
ȷωk q|u. (3)

Fulfilling the stability condition alone, however, does not war-
rant a colorless feedback loop. By applying Eq. (3) for each fre-
quency ωk we obtain the maximum eigenvalue curve. Strong ir-
regularities in such a curve lead to perceivable ringing tones well
below the stability limit due to some frequencies being more am-
plified than others by the feedback loop. A flat λmaxpeȷωk q curve
grants homogeneous decay for all frequencies looping in the sys-
tem. In the case of a flat λmaxpeȷωk q curve, a target RT-frequency
profile can be then achieved by introducing an equalizer, but this
goes beyond the scope of this work.

The maximum eigenvalue curve, though, is not representative
of the whole system’s eigenvalue set. A flat maximum eigenvalue
curve implies that at least for one eigenchannel all frequencies con-
tribute to the enhanced sound field. If, however, the eigenvalue
magnitude distribution is broad, then most of the feedback loop
energy is concentrated in one or few eigenchannels. On the other
hand, magnitudes of the system’s eigenvalues close to each other at
a frequency ωk provide a good distribution of the energy between
the eigenchannels at that frequency. But, if this last condition is
not preserved across frequencies, then not all of the spectrum con-
tributes to the enhanced sound field. For this reason, the optimiza-
tion should target an eigenvalue magnitude distribution that is nar-
row across both eigenchannels and frequencies.
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Figure 2: DDSP training pipeline to optimize the virtual room
V‹

ML. The parameters of the DSP of the differentiable AA sys-
tem are updated through backpropagation of the gradient of the
loss function.

Flattening the feedback loop magnitude responses may im-
prove the eigenvalue magnitude distribution. An optimization al-
gorithm requires less computational complexity if it targets flat
FMMpeȷωk q magnitude curves instead of a narrow eigenvalue mag-
nitude distribution since eigendecomposition is not required. How-
ever, due to the way the elements of FMMpeȷωk q are combined in
Eq. (2), such an algorithm would not account for how the phase re-
sponses in FMMpeȷωk q affect the eigenvalue set. The result of the
optimization would be a less optimal eigenvalue magnitude distri-
bution. To our knowledge, there is no previous study that considers
the difference between optimizing the magnitude responses of the
feedback loop matrix or the eigenvalues concerning the generated
enhanced reverberation in the physical room. For this reason, all
three levels of analysis—FMMpeȷωk q magnitude responses, max-
imum eigenvalue curve, and eigenvalue magnitude distribution—
are considered in this work.

3. PROPOSED METHOD

This section introduces an optimization-based approach to improve
the feedback loop’s energy distribution across frequencies. To
achieve this goal, we defined the system’s DSP as a set of train-
able FIR filters, following a DDSP framework wherein sparse fre-
quency sampling is employed [29]. In this framework, filter co-
efficients are optimized to minimize a loss function via stochastic
gradient descent. This approach differs from conventional black-
box machine learning techniques since the trainable parameters
possess physical interpretations. Specifically, the DSP filters are
responsible for the artificial sound enhancement injected in the
physical room and directly affect the stability of the system.

3.1. Differentiable active acoustics

The diagram of the training pipeline for the proposed architecture
is presented in Fig. 2. VMLpeȷωk q is a matrix of nLˆnM learnable
FIR filters. For a given HLMpeȷωk q, the optimization framework
estimates the coefficients of the optimized DSP V‹

ML FIR filters.
The loss L of the feedback loop matrix FMMpeȷωk q with respect
to a target Tpeȷωk q is minimized using stochastic gradient descent,
denoted with the gradient operator.

Before the training, we store the RIRs HLMrns, initialize the
coefficients of VMLrns by drawing from the random uniform dis-
tribution Up´1, 1q, and define the dataset as K discrete frequency

points sampled uniformly in the interval r0, π ´ π
K

s,

ΩK “

"

π
0

K
, . . . , π

K ´ 1

K

*

(4)

The dataset size K is chosen to ensure oversampling. In this study,
we used K “ 480 000 with a sampling rate of fs “ 48 kHz. At
each training step, a random subset of µ frequency points is ex-
tracted from Ωk to form a batch. Consequently, for each batch Ωµ,
VMLpeȷΩµq and HLMpeȷΩµq are computed using a non-uniform
discrete Fourier transform and combined, according to Eq. (1), to
obtain FMMpeȷΩµq. 90% of the dataset was used for the training,
and the remaining 10% was used for the validation.

We observed empirically that losses converged after 10 epochs
with a batch size of µ “ 2400. We employed an Adam optimizer
[30] with learning rate η “ 10´3. The learnable FIRs were un-
constrained, and thus each FIR was independent and each sample
in each FIR was free to vary within the real numbers set.

3.2. Loss functions

The model was trained on six different configurations employing
the mean squared error (MSE) loss. The loss minimization was
computed from the magnitude of either FMMpeȷΩµq or the sys-
tem’s eigenvalues in correspondence with the batch’s frequency
points.

The peaks in the magnitude of FMMpeȷωk q and in the eigen-
value magnitude distribution are the most dangerous for the sys-
tem’s stability and coloration. With this motivation, in this work,
we consider an MSE variant, where the loss exponent depends on
the sign of the magnitude difference between the target and either
FMMpeȷΩµq, λmaxpeȷΩµq, or tλipe

ȷΩµqu. This variant, which
we will refer to as Mean Asymmetric Error (MAsE), was intro-
duced in [26] to attenuate masker tones in an artificial reverberator.
Specifically, considering two generic tensors A and B—both with
dimensions d1, d2, and d3—the loss functions are:

L
´

A,B
¯

“
1

d1 d2 d3

d1
ÿ

i“1

d2
ÿ

j“1

d3
ÿ

k“1

pAijk ´ Bijkq
p. (5)

For MSE, the exponent is p “ 2. For MAsE, it is adjusted as
follows:

p “

#

2 for
`

Aijk ´ Bijk

˘

ď 0 ,

4 for
`

Aijk ´ Bijk

˘

ą 0 .
(6)

The six considered configurations were:

• MSE for the magnitude of FMMpeȷΩµq:

MSE-Magn “ MSE
´∣∣FMMpeȷΩµq

∣∣,TpeȷΩµqq

¯

• MAsE for the magnitude of FMMpeȷΩµq:

MAsE-Magn “ MAsE
´∣∣FMMpeȷΩµqq

∣∣,TpeȷΩµqq

¯

• MSE for the magnitude of the maximum eigenvalue curve:

MSE-EVmax “ MSE
´∣∣λmaxpeȷΩµq

∣∣,TpeȷΩµq

¯

• MAsE for the magnitude of the maximum eigenvalue curve:

MAsE-EVmax “ MAsE
´∣∣λmaxpeȷΩµq

∣∣,TpeȷΩµq

¯
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• MSE for the eigenvalue magnitude distribution:

MSE-allEVs “ MSE
´∣∣tλjpeȷΩµqu

∣∣,TpeȷΩµq

¯

• MAsE for the eigenvalue magnitude distribution:

MAsE-allEVs “ MAsE
´∣∣tλjpeȷΩµqu

∣∣,TpeȷΩµq

¯

,

where the absolute value symbol |¨| represents the matrix elemen-
twise absolute value. Depending on the specific loss, the dimen-
sions d1, d2, and d3 in (5) were pµ, nM, nMq for MSE-Magn and
MAsE-Magn, pµ, 1, 1q for MSE-EVmax and MAsE-EVmax, and
pµ, nM, 1q for MSE-allEVs and MAsE-allEVs.

The presented pipeline does not apply particular constraints on
the choice of the DSP and the target, which can be defined based on
different strategies and loss functions. The framework can be ap-
plied to both regenerative and inline systems. In this work, we first
consider regenerative AA systems. Regenerative systems usually
employ filters with short IRs, which can be obtained with low-
order FIR filters. This leads to a simple implementation with a
small number of learnable parameters and a fast training process.
In the end, we optimize the low-order FIR filters in an inline AA
system comprising a fixed artificial reverberator. Furthermore, we
aim to improve stability, and we do not consider perceptual met-
rics. Thus, as a target, we use a frequency-independent matrix of
ones, i.e., TpeȷΩµq “ 1 @ Ωµ. This typically leads to a loop TF
that is too bright, since natural RIRs tend to have lowpass char-
acteristics. Such a sound design aspect can be easily amended by
post-filtering with an equalizer with a smooth frequency response.

4. RESULTS

In this section, we evaluate the stability improvement provided
by the presented framework. We assess the performance of the
optimization algorithm in terms of the flatness of the feedback
loop magnitude responses and the system’s eigenvalues distribu-
tion. Since the magnitude responses of FMMpeȷωk q and the eigen-
value magnitude distribution are correlated, we compare the results
on both metrics for all the loss functions listed in Sec. 3.2.

4.1. Analysis setup

For the simulations, we used RIRs measured in a room equipped
with a multi-input multi-output channel system comprising four
microphones and 13 loudspeakers. The room fulfills the
ITU-R BR.1116 standard requirements with a volume of 103 m3

and RT of 0.3 s over a wide frequency range (100–8000 Hz). Four
Behringer ECM8000 microphones are fixed on the ceiling. There
are nine Genelec 8260A and four Genelec 8340A loudspeakers in
a 9.0.4 setup.

During the measurements, we used a 2-s-long exponential sine
sweep, that was played once for each loudspeaker and recorded
simultaneously by all microphones. The procedure was repeated
for each loudspeaker, obtaining a set of 52 recordings, which were
then convolved with the inverse sweep to obtain the IRs [31].

To test the dependence of the algorithm on transducer number,
we considered two transducer setups in the proposed framework
analysis. The first setup comprised only two microphones and two
loudspeakers, and this setup is referred to as small system in the
remainder of this paper. The second setup, dubbed full system,
included all system transducers.
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Figure 3: Comparison of the FMMpeȷωk q magnitude responses for
the small system with DSP of order 100 between the non-trained
DSP (black) and the DSP trained using MSE-Magn loss function
(orange).

To test the algorithm’s performance in relation to the length
of the DSP’s IRs, we considered FIR filters of orders 100 and
1000. The order of the filters remains consistent across all the
DSP matrix elements. We compare non-trained and trained FIR
filters, where the initial (non-trained) FIR coefficients are random-
ized non-integer values between -1 and 1. We always normalized
the DSP IR matrix before and after training:

`

VMLrns
˘

normalized
“

VMLrns

∥VML∥F
, (7)

where ∥VML∥F “
ř

i,j

ř

k V
2
MLi,j

rks is the Frobenius norm of
VMLrns. The normalization employed in Eq. (7) makes the com-
parison fair since both the initialized and the optimized DSPs do
not affect the average energy of the signal along the feedforward
path of the feedback loop. Thus, the matrix FMM has the same
energy in both the initialized and the optimized case, and we can
easily compare the difference in their respective GBI values.

4.2. Feedback loop flatness

To assess the algorithm’s ability to flatten the feedback loop TFs,
we compared the magnitude responses of the FMMpeȷωk q ele-
ments before and after the training. FMMpeȷωk q was computed
in the frequency domain as in Eq. (1), where HLMpeȷωk q and
VMLpeȷωk q were obtained with a DFT of 48k frequency points in
the range r0, πs rad. For better visualization, the curves in Figs. 3
and 4 were smoothed through an average pooling with a kernel
size of 256 samples.

Figure 3 shows the comparison between a DSP of non-trained,
randomized FIR filters (in black) and a trained DSP (in orange)
for the small system setup. Subplot titles indicate which TFs are
illustrated in the respective panes. The training was conducted
using MSE-Magn to maximize the curve flattening. The trained
DSP produces much flatter magnitude responses than the non-
trained DSP. Additionally, the optimized magnitude responses dis-
play similar values across all loop paths, meaning that the energy
is uniformly distributed among the elements of FMMpeȷωk q.

Figure 4 compares the magnitude responses for the p1, 1q ele-
ment of FMMpeȷωk q (cf. top-left pane of Fig. 3) after training the
DSP with all proposed losses. The results are presented for both
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