Download Differentiable Scattering Delay Networks for Artificial Reverberation Scattering delay networks (SDNs) provide a flexible and efficient
framework for artificial reverberation and room acoustic modeling. In this work, we introduce a differentiable SDN, enabling
gradient-based optimization of its parameters to better approximate the acoustics of real-world environments. By formulating
key parameters such as scattering matrices and absorption filters
as differentiable functions, we employ gradient descent to optimize an SDN based on a target room impulse response. Our approach minimizes discrepancies in perceptually relevant acoustic
features, such as energy decay and frequency-dependent reverberation times. Experimental results demonstrate that the learned SDN
configurations significantly improve the accuracy of synthetic reverberation, highlighting the potential of data-driven room acoustic modeling.