Differentiable Scattering Delay Networks for Artificial Reverberation

Alessandro Ilic Mezza; Riccardo Giampiccolo; Enzo De Sena; Alberto Bernardini
DAFx-2025 - Ancona
Scattering delay networks (SDNs) provide a flexible and efficient framework for artificial reverberation and room acoustic modeling. In this work, we introduce a differentiable SDN, enabling gradient-based optimization of its parameters to better approximate the acoustics of real-world environments. By formulating key parameters such as scattering matrices and absorption filters as differentiable functions, we employ gradient descent to optimize an SDN based on a target room impulse response. Our approach minimizes discrepancies in perceptually relevant acoustic features, such as energy decay and frequency-dependent reverberation times. Experimental results demonstrate that the learned SDN configurations significantly improve the accuracy of synthetic reverberation, highlighting the potential of data-driven room acoustic modeling.
Download