Download Probabilistic Reverberation Model Based on Echo Density and Kurtosis
This article proposes a probabilistic model for synthesizing room impulse responses (RIRs) for use in convolution artificial reverberators. The proposed method is based on the concept of echo density. Echo density is a measure of the number of echoes per second in an impulse response and is a demonstrated perceptual metric of artificial reverberation quality. As echo density is related to the statistical measure of kurtosis, this article demonstrates that the statistics of an RIR can be modeled using a probabilistic mixture model. A mixture model designed specifically for modeling RIRs is proposed. The proposed method is useful for statistically replicating RIRs of a measured environment, thereby synthesizing new independent observations of an acoustic space. A perceptual pilot study is carried out to evaluate the fidelity of the replication process in monophonic and stereo artificial reverberators.
Download Real-Time Modal Synthesis of Crash Cymbals with Nonlinear Approximations, Using a GPU
We apply modal synthesis to create a virtual collection of crash cymbals. Synthesizing each cymbal may require enough modes to stress a modern CPU, so a full drum set would certainly not be tractable in real-time. To work around this, we create a GPU-accelerated modal filterbank, with each individual set piece allocated over two thousand modes. This takes only a fraction of available GPU floating-point throughput. With CPU resources freed up, we explore methods to model the different instrument response in the linear/harmonic and non-linear/inharmonic regions that occur as more energy is present in a cymbal: a simple approach, yet one that preserves the parallelism of the problem, uses multisampling, and a more physically-based approach approximates modal coupling.