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ABSTRACT

This article proposes a probabilistic model for synthesizing room
impulse responses (RIRs) for use in convolution artificial rever-
berators. The proposed method is based on the concept of echo
density. Echo density is a measure of the number of echoes per
second in an impulse response and is a demonstrated perceptual
metric of artificial reverberation quality. As echo density is related
to the statistical measure of kurtosis, this article demonstrates that
the statistics of an RIR can be modeled using a probabilistic mix-
ture model. A mixture model designed specifically for modeling
RIRs is proposed. The proposed method is useful for statistically
replicating RIRs of a measured environment, thereby synthesizing
new independent observations of an acoustic space. A perceptual
pilot study is carried out to evaluate the fidelity of the replication
process in monophonic and stereo artificial reverberators.

1. INTRODUCTION

The reverberation of acoustic space is characterized by how a
sound is reflected and absorbed as it travels from a source to a
listener. Typically, a listener will observe the direct sound from
a source, followed by a series of distinct echoes. These echoes
are early reflections signifying the apparent geometries — such as
nearby walls — of the acoustic space. The echoes in the space will
rapidly build up, layering upon one another until giving way to a
dense late reverberation. Over the same period, due to the absorp-
tive properties of air and the surrounding environment, the acoustic
energy will decay until the environment is actuated again [1].

The same observations can be made by a time domain analysis
of a room impulse response (RIR), which may be procured through
techniques such as balloon pop [2], sine sweep [3], or maximum-
length sequence [4] measurements. Further analysis of RIRs in the
frequency domain can highlight the behavior of modes and their
decay. In the time domain, measures such as decay time (T60) and
echo density can be obtained, the latter of which is the focus of
this article.

Absolute echo density (AED) measures the number of echoes
per second, that is to say, the rate of non-zero impulses, in an RIR.
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In 1961, Schroeder noted that a property of “acoustically good
rooms” was a high echo density and focused on designing artificial
reverberators with a high echo density [5,6]. Moorer, in 1979, ob-
served that the distribution of echoes in an RIR becomes Gaussian
in nature as the reflections become well-mixed. Echo density has
been evaluated as a perceptually relevant reverberation parameter
in [7, 8], and has been used as a measure to control the mixing
time in feedback delay networks in [9]. Synthesis of RIRs based
on a desired echo density for use in convolution reverberators has
been pursued using a Poisson process [7, 8, 10], sparse FIR fil-
ters [11,12], and velvet noise [13]. Echo density-focused methods
permit RIRs synthesis from early reflections onward. In compari-
son, Gaussian noise synthesis methods described in [14, 15], only
accurately model the late reverberation.

This article builds upon work by previous collaborators on the
concept of normalized echo density (NED) [7,8,10,16]. NED is a
measure that compares the distribution of an RIR in a sliding time
window to the Gaussian distribution and, as a result, estimates the
echo density of an RIR. NED is inversely proportional to the sta-
tistical measure of kurtosis. In our contribution, we propose mod-
eling the statistics of an RIR with a probabilistic mixture model. A
mixture model characterizes a relatively complex probability dis-
tribution by modeling the distribution as a weighted sum of more
basic distributions. Mixture models, particularly Gaussian mixture
models (GMMs), have found wide usage in audio machine learn-
ing for tasks such as speaker identification [17–19]. GMMs have
also been used to remove reverberation from sonar signals [20].
However, using mixture models to synthesize RIRs is — to the
authors’ knowledge — a novel approach. The proposed method
has the potential to be an efficient and adaptive algorithm for syn-
thesizing RIRs which provides better characterization of the RIR
compared to prior methods.

Section 2 will review the proposed measures of echo density
and the relationship between echo density and kurtosis. Section 3
will describe the method of moments used to derive the weights of
the proposed mixture model and Section 4 will describe the mix-
ture parameters used when modeling RIRs. Section 5 will detail
example applications of the proposed method. Section 6 will detail
a perceptual study with results presented in Section 7. Section 8
will conclude.

2. ECHO DENSITY MEASURES

Echo density, in units of echoes per second, was first proposed as
a measure of reverberation quality in [5] and is now referred to as
the absolute echo density (AED). This is to distinguish AED from
the measure of normalized echo density (NED) [10].
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2.1. Normalized and absolute echo density

NED, η(t), was first proposed by Abel and Huang in [16] and
is a statistical measure that estimates, within a time window, the
departure of an RIR’s distribution from the Gaussian distribution.

η(t) =
1

erfc(1/
√
2)

t+β−1∑
τ=t−β

w(τ)1 {|h (τ) | > σ} . (1)

Here, h(t) is a time windowed portion of the RIR centered around
t and 2β long in samples, w(t) is a window function, and σ is
the standard deviation of the h(t). 1 {·} is the indicator function,
producing one when the argument is true and zero when false. We
assume h(t) to have zero-mean such that the standard deviation is:

σ =

 t+β∑
τ=t−β−1

w(τ)h2(τ)

 1
2

. (2)

The NED, η, can be related to AED, ρ, in echoes per second,
through the following expression,

ρ =
1

τd

η

1− η
, (3)

where τd is the echo duration in seconds. As η approaches 1, the
AED in the window will increase describing a well-mixed rever-
beration. Conversely, as η approaches 0 the AED will decrease
describing the sparse reflections found during early reflections.

2.2. Kurtotic measure of echo density

Abel and Huang, also proposed an alternative measure of echo
density with a close similarity to the NED [16]. Their metric is
related to the statistical metric of kurtosis α4,

ηk(t) =
σ[

1
3

∑t+β−1
τ=t−β w(τ)h4(τ)

] 1
4

∝ (α4)
− 1

4 . (4)

A measure of echo density based only on kurtosis was proposed
independently by Usher in [21].

Kurtosis is defined as the fourth standard moment and has been
incorrectly ascribed to the peakedness of a distribution or, alter-
natively, the fatness of a distribution’s tails. The measure, how-
ever, has no direct bearing on these components. Kurtosis is better
thought of as a movement of a distribution’s mass from its shoul-
ders to its center and tails [22, 23].

In this regard, kurtosis is an ideal measure of echo density. A
window with a sparse number of echoes will have a distribution
concentrated about its center and tails as the signal is dominated
by silence and the occasional reflection. The distribution of said
window will be highly kurtotic. Correspondingly, a well-mixed
window will not be kurtotic, as its distribution is Gaussian.

3. A MIXTURE MODELING APPROACH

A probabilistic reverberation model aims to generate a synthetic
RIR based on desired statistical properties. In [10], this was done
using a Poisson process. This process, however, becomes com-
putationally expensive for dense reverberations as echoes must be
generated on an echo-by-echo basis. We propose using a mixture
modeling approach to capture the statistics of an RIR.

The objective of a mixture model is — most often — to ap-
proximate the probability density of an empirical observation us-
ing a linear superposition of components with simpler density
functions. As such, the primary task of mixture modeling is to
derive the mixture parameters which best approximate a given ob-
servation. These parameters are the number of components, the
parameters of individual component density functions, and the
weights of each component within the mixture model.

The distribution of a RIR within a time window is relatively
simple and assumptions can be made regarding the necessary num-
ber of components and their individual parameters. These param-
eters are discussed in Section 4.1. We are then chiefly concerned
with deriving the weights of a finite set of components with known
probability densities. To accomplish this we will use the method of
moments, similarly described in [24, 25] instead of the more com-
mon maximum-likelihood-based expectation maximization (EM)
method [17]. The method of moments is based on matching the
raw moments of a mixture distribution to the raw moments of a
desired distribution. Raw, central, and standard moments are com-
mon statistical measures used to evaluate statistical properties such
the mean, variance, skewness, and kurtosis [26].

3.1. Raw, central, and standard moments

The nth raw moment of a random variable X with a continuous
probability density function f(x) can be computed using the ex-
pectation operator E[ · ]:

νn = E [Xn] =

∫
x∈R

xnf(x)dx. (5)

For a discrete random variable, E[ · ] is given by:

E [Xn] =

L−1∑
l=0

xn
l f(xl). (6)

For an empirical observation, f(xl) = 1
L

∀xi. The first raw mo-
ment is the mean, represented by X̄ = ν1, and the central moment
is a raw moment evaluated about the mean:

µn = E
[
(X − X̄)n

]
. (7)

If the distribution has zero-mean, the central moment is equivalent
to the raw moment. The second central moment is the variance
µ2 = σ2, the square of the standard deviation. The standard mo-
ment is the central moment scaled by the standard deviation,

αn = E

[(x− x̄

σ

)n]
. (8)

Kurtosis is, as previously mentioned, the fourth standard moment
and can be expressed in terms of the second and fourth central
moments

α4 =
µ4

µ2
2

, (9)

In the context of modeling an RIR, parameterizing our model
based on desired moments is intuitive if we aim to synthesize a
response with a desired echo density and therefore kurtosis.
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3.2. Method of moments

The method of moments aims to match the moments of a desired
distribution, Ẑ, to the moments of a mixture distribution. The
probability density function, fZ(x), of a mixture distribution Z is
generated by the linear superposition of a finite set of M compo-
nents with probability density functions fm(x) weighted by πm,

fZ(x) =

M∑
m=1

πmfm(x). (10)

The weights, πm, represent the amount by which each component
is sampled. As such, the total sampling must sum to unity and each
weight bounded:

M∑
m=1

πm = 1, 0 ≤ πm ≤ 1. (11)

Applying (5) to (10), consider that the nth raw moment of the mix-
ture distribution is the dot product of the mixture weights and the
nth raw moment of the components:

E [Zn] =

M∑
m=1

πm

∫
x∈R

xnfm(x)dx = ⟨π | νn⟩ (12)

The method of moments is then formulated as a linear system relat-
ing the raw moments of a mixture’s M components to the desired
raw moments and accounting for the constraint in (11):

Mπ = ν, (13)

where

M =


1 1 · · · 1

ν1,1 ν1,2 · · · ν1,M
ν2,1 ν2,2 · · · ν2,M

...
νn,1 νn,2 · · · νn,M


π =

[
π1 π2 · · · πM

]T
ν =

[
1 ν̂1 · · · ν̂n

]T
The moment matrix, M , is a n + 1 x M matrix formed by

nth raw moments νn,m of the mth component. The weight vector,
π, is found by applying the inverse moment matrix to the desired
moment vector, ν, of Ẑ with moments ν̂n. For M components, a
unique system necessarily requires the computation of n = M−1
moments. After solving (13) for π, the desired distribution is syn-
thesized by random sampling of pseudo-random sequences with
the same distribution as each component.

In this article, we utilize a mixture model based on the Gaus-
sian distribution Xi ∼ N (νi, σi). Each component is parameter-
ized by its mean µi and standard deviation σi. We chose Gaussian
components because the desired response is generated by random
sampling of scaled and shifted white Gaussian noise sequences.
The Gaussian distribution has the following probability density
function,

f (x | ν, σ) = 1

σ
√
2π

e
− 1

2
(x−ν)2

σ2 . (14)

The normal distribution, along with other distributions such as the
binomial, gamma, and the Poisson families of distributions, has the
property that its variance is — at most — a quadratic function of its
mean value x̄ [24, 27]. For these distributions, the moment matrix
is readily generated based on only the parameters of the component

Mixture Model Coloration Process

x[n] ∗

h[n]

y[n]

Figure 1: Block diagram of mixture model-based RIR synthesis.
A mixture model generates the desired “colorless” distribution
which is filtered to generate the RIR h[n]. This impulse response is
convolved with the input signal x[n] to generate the reverberated
signal y[n].

distributions. Table 1 provides the first four raw moments of the
Gaussian distribution.

Take note that the method of moments in (13) does not guar-
antee 0 ≤ πm ≤ 1 and assumes the moments, and therefore the
parameters, of the components are known. Tuning the component
parameters to generate non-negative weights is an iterative opti-
mization process [24]. However, based on prior knowledge of RIR
signals, assumptions can be made regarding the necessary number
of components and their individual parameters. These assumptions
are described in the next section.

4. PROBABILISTIC MODELING BASED ON ECHO
DENSITY

Our proposed probabilistic RIR model is compromised of two sep-
arate modeling processes, described in a block diagram in Figure
1. The first model is the mixture model which will generate what
we denote the “echo response,” a noise-like “colorless” impulse
response based on the desired moment vector ν. Once the echo
response has been generated, the color of the reverberation is mod-
eled by a coloration process. Because the distribution of silence in
each echo response is stochastic, RIRs synthesized with the same
color will not be statistically correlated. The parameters of both
models evolve with time.

This article is primarily concerned with the synthesis of the
echo response, and we utilize an STFT-based frequency domain
convolution to impose the spectra of a measured RIR onto the echo
response. Similar RIR synthesis procedures have used equal rect-
angular bandwidth (ERB) band-wise exponential decay to color
Poisson process generated noise [8]. Time-varying lowpass col-
oration filters have been used to color velvet noise [28]. In this
section, we determine the parameters of the proposed RIR mixture
model based on assumptions regarding the distribution of RIRs.

Table 1: First four raw moments of Xi ∼ N (µi, σi)

ν1 µi

ν2 µ2
i + σ2

i

ν3 µ3
i + 3µiσ

2
i

ν4 µ4
i + 3σ4

i + 6µ2
iσ

2
i
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Figure 2: Approximation of a Gaussian distribution f (x | 0, A/3)
(dashed grey) with the proposed mixture components (blue). The
summation of the mixture components (black) matches the de-
sired distribution except near zero where the model fails to capture
the contribution from the degenerate distribution. A histogram of
noise generated by the mixture — with bin centers and values in-
dicated by the red scatter plot — demonstrates close adherence to
the desired normal distribution.

4.1. Mixture model parameters for RIR synthesis

In regards to the number of components, we assume that echo den-
sity — and consequently kurtosis — suitably characterizes the be-
havior of an RIR and it is unnecessary to consider moments higher
than the fourth moment. By the nature of (13), a unique system
necessitates a mixture with only five components.

In regards to the component parameters, consider that a large
portion of an RIR signal during early reflections and into the late
reverberation is the silence between echoes. To characterize this,
we suggest that one component of the mixture should be a Gaus-
sian with zero-mean and a variance that approaches an infinitely
small value,

f0(x) = lim
σ→0

f (x | ν = 0, σ) = δ(x). (15)

The density function of this component can be abstractly repre-
sented by a delta function, and all raw moments of this component
are equal to zero: νn = 0 ∀n. This distribution is also referred to
as a degenerate distribution [29].

We then assume — without loss of generalization — that the
window has zero-mean and is normalized such that the samples
lie within the amplitude range ±A. The remaining components
(M = 4) are then evenly spaced in the range:

νm = −A+
2A

M + 1
m, m = 1, 2, . . . ,M. (16)

We propose that these components exhibit the same standard devi-
ation. Overlapping the distribution is necessary to ensure a contin-
uous distribution, but too much overlapping promotes the genera-
tion of negative weights as we are — in a sense — oversampling
our distribution. Too little overlapping creates gaps in the ampli-
tude distribution and the distribution is undersampled.

To ensure an ideal overlap of our component density func-
tions, we proposed that the intersection between two neighboring
Gaussians should sum to the maximum value of each component’s
density function. Determining the intersection of Gaussian prob-
ability densities f (x | νm, σ) and f (x | νm+1, σ) by substituting
the expressions for νm and νm+1 from (16) into (14), the point of
intersection is,

x =
A

M + 1
(2m−M) . (17)

The result is substituted back into (14) and evaluated against half
the maximum value, 1

2
1

σ
√
2π

. The proposed standard deviation for
the components is:

σ =
A

M + 1

√
1

2 log(2)
(18)

Even with these parameters, it is possible to generate negative sam-
pling weights. To counteract this, we propose that any negative
weights are zero-ed and the resulting π vector is rescaled to ob-
serve the constraint in (11)

πi =

{
πi, 0 ≤ πi ≤ 1

0, πi < 0
(19)

If the desired amplitude A is normalized, then the parameters
of our components are predetermined and the inverse moment ma-
trix M−1, can be stored ahead of computation. Since the desired
distribution is assumed to have zero-mean, the desired moment
vector ν simplifies to,

ν =
[
1 0 µ2 0 µ4

]T (20)

In Figure 2, the proposed mixture is used to approximate a
Gaussian distribution with f (x | µ = 0, σ = A/3). The sum of
the component density functions, in black, approximates the Gaus-
sian distribution except near zero where the contribution of the de-
generate distribution is not well characterized. The histogram of
a simulation, indicated by a red scatter plot, instead verifies the
mixture behavior.

5. EXAMPLES

Given a desired NED in (4) and the definition in (9), it is difficult
to make assumptions about the necessary values of µ2 or µ4. In the
following examples, we demonstrate how to determine the desired
moment vector for a desired AED value based on the properties of
a generalized Poisson process. Alternatively, the desired moment
vector can be found empirically when statistically replicating an
RIR.

5.1. Static echo density based on the Poisson distribution

The generalized Poisson process proposed in [10] forms the pro-
cess:

h(t) =
∑

α(t) · δ(t− τ(t)). (21)

The arrival times are represented as a set of Poisson impulses
where τ(t) is drawn from an exponential distribution τ(t) ∼
exp {−t/ρ(t)} and ρ is the AED at time t. The amplitude, con-
versely, is drawn from a Gaussian distribution with a variance also
dependent on the AED, α(t) ∼ N

(
0,
√

1/ρ(t)
)
.
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Figure 3: Comparison of the left (black) and right (red) RIR sig-
nals and NED measured in Pollack Hall at McGill University.
Spectrograms of each are displayed on the bottom left and right,
respectively. The NED profiles are similar while the spectrograms
are nearly identical.

The second and fourth moments of the Poisson process de-
scribed by [10] can be derived based on the properties of a Poisson
impulse [26]. A proof deriving the fourth moment of the Poisson
process is provided in Section 11. The resulting second and fourth
central moments are:

µPP
2 =

1

ρ
·

((
ρ

fs

)2

+
ρ

fs

)
(22a)

µPP
4 =

(
1

ρ

)2

·

((
ρ

fs

)4

+ 3
ρ

fs

)
. (22b)

These results can be substituted into the desired moment vector in
(20). With these parameters, the proposed mixture described in
Section 4.1 can generate a window of impulses with a fixed echo
density. This method can be generalized to generate a synthetic
RIR with a time-varying NED or AED profile.

5.2. Statistical replication of RIRs based on their moments

Another application of the method is for statistically replicating
RIRs of measured rooms. The RIR replicas are akin to an indepen-
dent observation of the acoustic space. Consider Figure 3, which
compares the RIR measurement of Pollack Hall at McGill Uni-
versity with two microphones spaced roughly a human head width
apart. The NED profile and spectrogram are nearly identical, and
the two responses mainly differ in the arrival time of the reflec-
tions. Replicated RIRs can be used artistically in virtual acoustics
to simulate different observations of a measured space.

To replicate a measured RIR, we propose using the overlap-
add (OLA) algorithm [30] to analyze the raw moments of the mea-
sured RIR. Within each window, the echo response is generated
and then colored in the spectral domain. In comparison to the
Poisson process, the mixture model approach makes no assump-
tions about the distribution of the measured responses and instead
attempts to holistically replicate the measured distribution.

100 1000
Time (ms)

0.5

0.0

0.5

1.0

1.5

2.0

N
E

D

Figure 4: RIR and NED of a measure (grey) of the Pollack Hall at
McGill University replicated using the proposed method without
block switching (blue) and with block switching (green). The syn-
thesis window is 5 ms long while the analysis window was 10 ms
long.

Window size is an important parameter in the proposed
method, as the generated echoes are randomly distributed within
the window. This can result in temporal smearing when replicating
early reflections as energy is no longer concentrated about distinct
echoes. Smearing can be decreased by using a smaller window
size at the cost of frequency resolution in the coloration process. A
possible solution is to use a window size switching scheme akin to
how transients are analyzed in audio coding [31]. In this scheme,
a small window replicates early reflections and a longer window
replicates the late reverberation. The result of the replication pro-
cess with a single-window size and switched window size is shown
in Figure 4. The main window size for both methods was 5 ms,
and the small window size was 1.25 ms. The window size was
switched after 30ms. These values were heuristically chosen and
a formal metric based on NED merits further investigation.

The first reflections are largely deterministic based on the ge-
ometry of the acoustic space. When replicating RIRs it is better —
in practice — to mix the first reflections from the measured RIR
with early reflections onward from the replica. This is achieved by
crossfading the measured RIR with the replicated RIR following a
few early reflections. For the experiment described in Section 6,
the signals were mixed 30ms after the initial direct path impulse
with a mixing time of 5ms.

6. PERCEPTUAL EXPERIMENTS

Two informal perceptual pilot studies were conducted on stu-
dents from CIRMMT and CCRMA. The first study compared the
smoothness of noise generated with the Poisson process and the
proposed mixture model. The mixture was generated for vary-
ing NED values using the parameters discussed in Section 5.1.
The second study evaluated the efficacy of RIR replication us-
ing the Poisson process and the method discussed in Section 5.2.
Both studies were administered online using the BeaqleJS frame-
work [32]. All samples used in the study had their loudness nor-
malized based on the EBU R 128 recommendation [33]. Samples

DAFx.5



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Figure 5: Violin plot of perceived smoothness versus designed
NED value. The Poisson process (blue) and mixture-generated
samples (red) evaluations have been, respectively, shifted to the
left and right from the designed values. The reference samples are
in grey, and the “sputtery” reference with η = 0.05 is offset to the
left.

used in the experiment can be accessed online 1.

6.1. Noise smoothness evaluation

Participants were asked to rate the smoothness of noise generated
using the Poisson process and the proposed mixture for NED val-
ues η = 0.1, 0.3, 0.75, and 0.9 with a bandwidth of 10 kHz. Partic-
ipants were asked to rate each noise sample on a scale from “sput-
tery” [0− 1

3
) to “rough” [ 1

3
− 2

3
) to “smooth” [ 2

3
−1], terminology

borrowed from an earlier study [10]. The participants were given
two reference signals to ground their evaluations: a smooth ref-
erence — Gaussian noise — and a sputtery reference — Poisson
process noise with η = 0.05.

6.2. RIR replication evaluation

Participants were asked to subjectively rate the quality of mono-
phonic and stereo reverberated signals in a multi-stimulus test
with hidden reference and anchor (MUSHRA) style test [34]. The
test included a training phase where participants were familiarized
with the process using a sample not included in the main evalua-
tion and an artificial impulse response.

For the main evaluation, two environments were measured
as references: Pollack Hall at McGill University and Memorial
Church at Stanford University. RIR measurements of both envi-
ronments were captured using two microphones representing the
left and right channels. In the monophonic evaluations, only the
left channel was utilized. Both channels were used in the stereo
evaluations.

Test signals were generated by convolving generated and mea-
sured RIRs with anechoic audio samples. The anechoic audio sam-
ples consisted of female voice speech, drum, and clarinet signals.
The voice and drum signal were chosen as they are largely impul-
sive in nature and the clarinet was chosen as it is pitched and less
impulsive comparatively. The test RIR replicas were created using

1https://ccrma.stanford.edu/∼champ/dafx23

Figure 6: Comparison of 3.5kHz lowpass anchor responses for
clarinet (Cl), female voice (Fv), drums (Dr), and RIRs (RIR).

the proposed method and the Poisson process. Anchor RIRs were
generated by filtering the measured RIRs at 3.5 and 7 kHz based
on recommendations in [34]. Participants were additionally asked
to evaluate the RIR signals by themselves.

7. RESULTS AND ANALYSIS

Both experiments had a total of 10 participants. However, one
participant was removed from the RIR replication study as they
consistently rated the anchor and reference signals as having an
equal perceptual quality.

7.1. Noise smoothness results

The results of the noise smoothness study are shown in Figure 5.
Our experiment demonstrates that samples generated with the pro-
posed mixture model have a similar perceived smoothness as sam-
ples generated through the Poisson process. The proposed mixture
has a higher mean perceived smoothness compared to the Poisson
process for three NED levels. These results suggest that the pro-
posed model performs similarly to prior methods for generating
samples with fixed NEDs.

7.2. RIR replication study results

The overall results for all samples are shown in a violin plot in
Figure 7a. The overall mean rating for the proposed method is
evaluated as being second in quality to the reference. However, it
is worth recognizing that participants had difficulty discriminating
the hidden anchors and there were a small number of participants
in the pilot study.

Evaluation was particularly difficult in the case of the clarinet
sample which was the only audio sample with sustained sounds. A
comparison of the 3.5kHz lowpass anchor for different samples is
shown in Figure 6. This would suggest that the evaluation of RIR
quality is better performed with audio signals that are transient or
with the RIR signal by itself.

Further analysis is obtained if samples are delineated by
monophonic or stereo test signals as in Figure 7b and Figure 7c, re-
spectively. In Figure 7b, the performance of the proposed mixture
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Figure 7: Violin plot of MUSHRA-style RIR replication study. (a) compares the overall results, (b) the monophonic sample results, and
(c) the stereophonic sample results. A35 corresponds to the 3.5kHz lowpass anchor, A70 to the 7.0kHz lowpass anchor, M to the proposed
mixture model, P to the Poisson process, and R to the reference.

model is similar to the Poisson process method for monophonic
samples. However, in Figure 7c, the performance of the proposed
mixture method is better than that of the Poisson process method
stereo samples. This suggests that when rendering virtual acoustic
scenes, the proposed method may provide better results.

8. CONCLUSION AND FUTURE WORK

In this article, we proposed a new method for synthesizing artificial
RIRs for use in convolution reverberators. The proposed method
uses a mixture model with component parameters designed specif-
ically for RIR synthesis. A pilot perceptual study demonstrates the
efficacy of the proposed method in comparison to a previously pro-
posed RIR modeling technique. Future work is needed to properly
evaluate the quality of the proposed method in a larger study. Fre-
quency domain convolution was used to color the generated echo
responses, and future work should evaluate the quality of different
coloration techniques.
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11. APPENDIX

We derive the fourth moment of the Poisson process proposed by
[10] and discussed in Section 5.1. The nth moment of the process
described in (21) evaluates,

E [αn(t)δn(t− τ(t))] . (23)

The Gaussian distributed amplitude and Poisson impulse are mu-
tually independent, therefore their expectations are separable

E [αn(t)]E [δn(t− τ(t))] . (24)

The nth moment of the α(t) can be readily found based on the
Gaussian distribution, and the first four moments are provided in
Table 1. The Poisson impulse can be constructed by taking the
time derivative of a Poisson process which is modeled as a dis-
crete Poisson distributed variable X ∼ P (k | λ = ρ/fs · t). The
Poisson distribution represents the probability there are k events
when λ is the mean number of events. From the linear property of
the expectation and time derivative operators, one can verify that
the mean of the Poisson impulse is ρ/fs.

Derivation of the second moment of the Poisson impulse is
given in [26]. Here, we present the derivation of the fourth
moment. The fourth moment of a Poisson process for non-
overlapping times t1 < t2 < t3 < t4 is related to the Poisson
impulse by the partial derivatives ∂

∂ti
of the correlation operator

R,

Rδδδδ(t1, t2, t3, t4) =
∂4Rxxxx(t1, t2, t3, t4)

∂t1∂t2∂t3∂t4
. (25)

The correlation of a randomly distributed variable is equivalent to
its expectation,

Rxxxx(t1, t2, t3, t4) = E [X(t1)X(t2)X(t3)X(t4)] , (26)

and t1, t2, t3, t4 are non-overlapping. The expectation above can
be re-expressed as,

E [X(t1)X(t2)X(t3)X(t4)] =

4∏
i=1

E [X(ti)−X(ti−1)] ,

(27)
with x(t0) = 0. This product can be expanded as the first moment
for all x(ti) is ρ/fst

Rxxxx(t1, t2, t3, t4) =
ρ4

f4
s

· t1(t2 − t1)(t3 − t2)(t4 − t3) (28)

Applying the partial time derivatives in (25), the resulting fourth
moment is

Rδδδδ =
ρ4

f4
s

+
ρ

fs
(δ(t1 − t2) + δ(t2 − t3) + δ(t3 − t4)) (29)

where the δ(t) terms account for the discontinuities between non-
overlapping time segments.
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