Download Real-Time Singing Voice Conversion Plug-In
In this paper, we propose an approach to real-time singing voice conversion and outline its development as a plug-in suitable for streaming use in a digital audio workstation. In order to simultaneously ensure pitch preservation and reduce the computational complexity of the overall system, we adopt a source-filter methodology and consider a vocoder-free paradigm for modeling the conversion task. In this case, the source is extracted and altered using more traditional DSP techniques, while the filter is determined using a deep neural network. The latter can be trained in an end-toend fashion and additionally uses adversarial training to improve system fidelity. Careful design allows the system to scale naturally to sampling rates higher than the neural filter model sampling rate, outputting full-band signals while avoiding the need for resampling. Accordingly, the resulting system, when operating at 44.1 kHz, incurs under 60 ms of latency and operates 20 times faster than real-time on a standard laptop CPU.
Download P-RAVE: Improving RAVE through pitch conditioning and more with application to singing voice conversion
In this paper, we introduce means of improving fidelity and controllability of the RAVE generative audio model by factorizing pitch and other features. We accomplish this primarily by creating a multi-band excitation signal capturing pitch and/or loudness information, and by using it to FiLM-condition the RAVE generator. To further improve fidelity when applied to a singing voice application explored here, we also consider concatenating a supervised phonetic encoding to its latent representation. An ablation analysis highlights the improved performance of our incremental improvements relative to the baseline RAVE model. As our primary enhancement involves adding a stable pitch conditioning mechanism into the RAVE model, we simply call our method P-RAVE.