
Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

REAL-TIME SINGING VOICE CONVERSION PLUG-IN

Shahan Nercessian, Russell McClellan, Cory Goldsmith, Alex M. Fink, and Nicholas LaPenn

iZotope, Inc.
Boston, MA, USA

{shahan|rmcclellan|cgoldsmith|afink|nlapenn}@izotope.com

ABSTRACT

In this paper, we propose an approach to real-time singing voice
conversion and outline its development as a plug-in suitable for
streaming use in a digital audio workstation. In order to simul-
taneously ensure pitch preservation and reduce the computational
complexity of the overall system, we adopt a source-filter method-
ology and consider a vocoder-free paradigm for modeling the con-
version task. In this case, the source is extracted and altered using
more traditional DSP techniques, while the filter is determined us-
ing a deep neural network. The latter can be trained in an end-to-
end fashion and additionally uses adversarial training to improve
system fidelity. Careful design allows the system to scale naturally
to sampling rates higher than the neural filter model sampling rate,
outputting full-band signals while avoiding the need for resam-
pling. Accordingly, the resulting system, when operating at 44.1
kHz, incurs under 60 ms of latency and operates 20 times faster
than real-time on a standard laptop CPU.

1. INTRODUCTION

Singing voice conversion (SVC) is an audio style transfer appli-
cation which converts the voice of a sung performance to that of
another without changing its underlying content or melody [1]. It
can be used for expressive and creative voice manipulations that go
beyond conventional effects. Relative to voice conversion applied
to speech, SVC has stronger demands on accurate pitch preserva-
tion as humans are sensitive to pitch instabilities in singing [2].

SVC has been dominated by deep learning approaches of late.
With some exceptions, methods attempt to predict converted acous-
tic features, and use vocoders to synthesize waveforms from said
features [3]. The end-to-end adversarial SVC (EA-SVC) method
inverts a learned latent representation with a MelGAN [4] gener-
ator, using adversarial training to improve signal plausibility [5].
DiffSVC uses a diffusion model to improve acoustic feature mod-
eling [6]. As state-of-the-art neural vocoders often lack sufficient
pitch stability, FastSVC [1] conditions waveform generation on a
harmonic excitation signal. Most approaches focus on fidelity im-
provements, with less attention placed on their deployability as
real-time streaming plug-ins that operate seamlessly in conven-
tional audio workflows.

In our own previous works, we have considered different fea-
ture representations and end-to-end training mechanisms [2, 3].
Most recently [7], we explored a vocoder-free alternative [8] that
was implemented in an end-to-end context using a variation of a
WORLD feature representation [9]. In this case, we achieved SVC
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Figure 1: Proposed RT-SVC system block diagram.

by processing the input signal rather than synthesizing a new one
based on it, effectively guaranteeing its relative pitch contour.

In this work, we propose a real-time SVC (RT-SVC) approach
and implement it as a real-time plug-in. Drawing from [7], we
model SVC using a source-filter method, combining pitch-shifting
techniques with a lightweight, low-latency neural filter model. We
highlight design choices to balance fidelity and performance, and
means of scaling our methods to different sampling rates. Our
paper is organized as follows: Section 2 describes the proposed
method, Section 3 discusses its realization as a real-time plug-in,
Section 4 reports experimental findings, and Section 5 draws con-
clusions.

2. PROPOSED METHOD

2.1. System overview

We consider source and target vocalists S and T , respectively. Our
aim is to determine a suitable waveform xS→T capturing the per-
formance (content) of an input source waveform xS , while as-
suming the character of T (style). The conversion task involves
two transformations on xS , as illustrated conceptually in Figure
1. The first stage pitch shifts the input by a constant factor, such
that the resulting xS,PS is reflective of the register of the vocalist
T . The second stage applies linear time-varying (LTV) filtering
to the pitch-shifted result so that the timbre of the result conceiv-
ably matches that of the vocalist T . This is modeled using a deep
learning model trained in an end-to-end manner over a dataset of
recordings of the vocalist T . As stated, the problem naturally lends
itself to a source-filter approach.

While many SVC approaches depend on neural vocoders to
synthesize new waveforms from inferred representations, we ap-
proach the task by processing the input signal. In the context of a
real-time system, this offers several advantages, including:

• Pitch preservation: Parametric/neural vocoders are prone to
pitch errors, and cannot ensure relative pitch input contour
preservation in their outputs. Meanwhile, we preserve pitch
exactly, barring absolute shifts which we can reliably apply.

• Reduced complexity: Removing the need for a vocoder re-
duces computational footprint and latency in our system.
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Figure 2: Fully differentiable end-to-end neural filter model block diagram.

• Extension to arbitrary sampling rates: We can extend our
method to sampling rates beyond that used in training, pro-
ducing wide-band outputs while only needing to model the
SVC effect over a perceptually relevant sub-band [10].

• Voice interpolation: We can interpolate between source and
modeled timbres via a convex combination of acoustic fea-
tures, with perfect recovery of the source timbre if desired.

2.2. Vocoder-free design with WORLD log Mel spectrograms

Defining F and F−1 as the forward and inverse short-time Fourier
transforms (STFT), respectively, we describe our approach as a
spectral process. At a nominal sampling rate fs,0 = 22.05 kHz,
we use hop and frame lengths of H = 256 and N = 1024 sam-
ples, respectively. A signal x has the source-filter decomposition

x = F−1 [F(e)⊙F(h)] (1)

where e and h denote the time-varying source (i.e. excitation) and
filter function of x, respectively. Proper estimation of the spec-
tral envelope |F(h)|2 leads to extraction of a predominantly flat
excitation spectrum. To this end, we leverage the CheapTrick al-
gorithm from WORLD analysis [9], which estimates spectral en-

velopes sp =
∣∣∣F(ĥ)

∣∣∣2 via a fundamental frequency (f0) depen-
dent smoothing of signal power spectra.

We seek to determine F(eS→T ) and F(hS→T ) given xS ,
from which we can compute xS→T according to equation (1). To
model the excitation spectrum, we apply a pitch shift to xS to
register match it against the target vocalist, resulting in xS,PS,0.
Robust formant preservation during pitch shifting is a system re-
quirement, and we propose a generic means for providing this
for any pitch shifting process through formant-preserving post-
filtering. Leveraging CheapTrick again, we derive the spectrum
of what would be the post-filtered, pitch-shifted signal xS,PS as

F(xS,PS) =

√
spS

spS,PS,0
⊙F(xS,PS,0) (2)

where spS and spS,PS,0 are estimates of the spectral envelopes of
xS and xS,PS,0, respectively.

To reduce the dimensionality of features ultimately predicted
by our deep learning model, we use a compressed representation
called the WORLD log Mel spectrogram [7], given by

X = log10(M
√
sp+ ϵ) (3)

where M is the Mel basis matrix used to compute an M -band Mel
spectrogram from an N -point STFT, and ϵ = 10−5 is used for nu-
merical stability. It is similar to the generalized Mel cepstrum [3],
except that it makes for a more obvious differentiable implementa-
tion to support end-to-end training. We use M = 80 in this work.
A decompressed approximation of X is then

sp† =
[
M†

0(10
X − ϵ)

]2
(4)

where M†
0 = max(M†, 0) and M† denotes the pseudo-inverse of

M. Given sp†S derived from the source WORLD log Mel spectro-
gram XS , the estimated excitation spectrum is given by

F(êS→T ) =

√
1

sp†S
⊙F(xS,PS) (5)

We task a deep learning model (discussed in Section 2.3) to
provide estimates for X̂S→T , resulting in F(ĥS→T ) = ŝp†S→T

via equation 4. Combining into equations (1) and (5), the con-
verted waveform is estimated as

x̂S→T = F−1

[
κ⊙

√
ŝp†S→T

sp†S
⊙

√
spS

spxS,PS,0

⊙F(xS,PS,0)

]
(6)

where κ is a normalization term computed empirically at each time
step to ensure that the modified spectrum L1 norm matches that of
F(xS). Equation 6 contains four distinct parts: 1) pitch shift-
ing, 2) formant-preserving post-filtering, 3) timbral modification,
and 4) normalization. The resulting ratio-based LTV filter is non-
negative by design, mitigating potential phase coherence issues.

2.3. Neural filter model

The goal of the neural filter model, outlined in Figure 2, is pri-
marily to infer WORLD log Mel spectrograms X̂S→T to match
the timbre of the target singer while maintaining the content of
the source. The LTV filtering outlined in Section 2.2 can be made
fully differentiable given access to the various spectral envelopes
and waveforms as input, so it is implemented as part of our model
in order to enable its end-to-end training [11], yielding x̂S→T .

To perform SVC for any source S, we must create a singer-
independent encoding for xS . Our encoder extracts source loud-
ness LS deterministically, using the frame-level root-mean-square
(RMS) converted to decibels during training (with system hop and
frame lengths). We also use the tonality-gated f0 contour FS ex-
tracted using DIO [9] within WORLD analysis during training. At
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inference time, the pitch feature is offset based on the pitch shift
that we apply, yielding the target pitch contour FS→T . Lastly,
to capture linguistic content, we extract a phonetic posteriorgram
PS [5] from a phoneme classifier. We found it instructive to pre-
emphasize the input prior to passing it to the phoneme classifier
using a finite impulse response filter of the form

y[t] = k0x[t]− k1x[t− 1] (7)

with k0 = 1.0 and k1 = 0.97. The classifier then passes 40 Mel
frequency cepstral coefficients (MFCCs) extracted from the pre-
emphasized signal through a unidirectional recurrent architecture
consisting of two long short-term memory (LSTM) layers with 256
units, and a final dense layer yielding a 61-dimensional output vec-
tor of phoneme class probabilities at each time step. The network
is trained on the TIMIT dataset [12].

The decoder builds upon a lightweight, real-time variant of
the architecture in [11], where each multi-layer perceptron (MLP)
head uses a single dense layer with 256 units, layer normalization
and ReLU nonlinearity. As the initial architecture only considered
frequency and loudness features, we add an additional head for
PS . In doing so, we effectively model the way in which the tim-
bre of a phonetic sequence of a target vocalist is varied based on
changes in delivery (e.g. when belting a high note loudly). The
inputs and outputs of each encoding head are combined and fed
through a single 256-unit LSTM layer, followed by a dense layer
which outputs a WORLD log Mel spectrogram. The end-to-end
audio processor contained within the model filters input audio us-
ing the decompressed spectral envelopes, resulting in the model
output waveform.

2.4. Training objective

The neural filter model is trained as an autoencoder, and therefore,
we have xS = xS,PS,0 = xS,PS = xT = xS→T , XS = XT =
XS→T , FS = FT = FS→T , etc. during training. In this sense,
the model is trained end-to-end, but admittedly, is never exposed
to pitch-shifted audio (or any of its associated audio artifacts), as
the training objective is merely one of self-reconstruction.

Model training minimizes a combination of conventional neg-
ative log likelihood loss terms ensuring good average fidelity and
adversarial loss terms promoting plausible system outputs as deter-
mined by a discriminator network [4]. To this end, we considered
the time-domain multi-scale discriminator architecture in [4] and a
single-scale version of the spectral domain architecture as in [13].
Also similar to [13], we actually observed better performance us-
ing a spectral domain discriminator for the task. Given a suitably
trained and frozen (phonetic) encoder, the full objective function
for the neural filter model is

L = LMSE + LMSL + µLG (8)

where LMSE is the mean squared error (MSE) defined on WORLD
Mel spectrograms (i.e. the decoder outputs), LMSL is the end-
to-end multi-spectrogram loss (MSL) [11], LG is the end-to-end
adversarial generator hinge loss, and µ is a hyperparameter set to
0.5 in this work. As in [14], we noticed that the usual deep fea-
ture matching loss associated with [4] tended to slow down con-
vergence, and that LMSE + LMSL was sufficient for stabilizing
adversarial training. The discriminator is trained to minimize its
corresponding end-to-end discriminator hinge loss.

3. REAL-TIME PLUG-IN IMPLEMENTATION

We have implemented our system as a real-time plug-in in C++.
Here, we outline practical considerations for such a realization.

3.1. Streaming feature extraction

We approximate the frame-based loudness feature used during train-
ing, computing RMS in a zero-latency fashion via a 1-pole infinite
impulse response (IIR) filter with a time constant equal to the sys-
tem stride. We replace DIO with our proprietary low-latency pitch
detection algorithm, and use our implementation of the Lent algo-
rithm [15] as a real-time pitch shifter. Loudness and pitch features
are sampled according to the system stride so that they are aligned
to their frame-based counterparts. Lastly, we refactor the Cheap-
Trick C++ implementation [9] to handle buffered audio streams.

3.2. Extension to higher sampling rates

We design the plug-in to extend processing to a sampling rate
fs = G · fs,0 (G ≥ 1) without the need for resampling. We
consider how our feature representations vary as a function of G,
and devise schemes to roughly neutralize this effect, so as not to
create a large input feature mismatch from training. Our pitch de-
tection/shifting algorithms and the loudness and pitch feature com-
putations in Section 3.1 are sample-rate agnostic by construction.
STFT frame and hop lengths scale with G (while ensuring N to
be an even power of 2), and as most fast Fourier transform (FFT)
implementations are unnormalized, we carefully scale power and
magnitude spectra (as used in CheapTrick or to generate MFCCs)
by 1/G2 and 1/G, respectively. We construct Mel bases and
pseudo-inverse matrices at fs while maintaining their respective
lower and upper frequency bounds at fs,0. We roughly preserve
the response of the pre-emphasis filter in equation (7) using gener-
alized filter coefficients k0 = G, k1 = G− 1+ k1,0, k1,0 = 0.97.

Lastly, we found that we only need to model SVC up to around
10 kHz (arguably lower) to yield a convincing effect, and that we
can safely extend the LTV filter gain derived near this boundary
to frequencies above it. This effectively amounts to injecting a
properly scaled version of F(xS,PS) at frequencies above 10 kHz.
This way, we produce wide-band SVC results, even though our
network is only trained to model a smaller bandwidth arguably
considered too narrow for music production purposes.

3.3. Model export

According to its gains in [16], we use TFLite as a real-time deep
learning inference engine. To do so, we recreate encoder/decoder
architectures in TensorFlow, explicitly defining a single time step
of acoustic features as model input/output. We add LSTM state
vectors as additional inputs/outputs so that we can propagate them
between time steps and reset them as needed in the plugin. Lastly,
we convert the resulting TensorFlow model to the TFLite format.

3.4. Plug-in performance

We incur about 45 ms of latency due to windowing in CheapTrick
and the forward/inverse STFTs, and less than 15 ms of residual
latency due to pitch detection/shifting, resulting in a total plug-in
latency of just under 60 ms. The plug-in runs 20 times faster than
real-time on a standard laptop CPU and can be launched from a
conventional digital audio workstation.
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Table 1: Quantitative and qualitative model comparisons.

Model L1 # Params. Pitch shifter MOS

Offline [7] 0.042 25.3M Lent 3.99
Phase Vocoder 4.52

RT-SVC 0.135 2.19M Lent 3.37
Phase Vocoder 3.89

RT-SVCGAN 0.225 2.19M Lent 3.69
Phase Vocoder 4.20

4. EXPERIMENTAL RESULTS

We exemplify our methods using an internal collection of voice
data. The dataset features recordings from 15 different singers,
with approximately 2 hours of data for each singer. We consider
3 SVC models for each vocalist: our offline model used in [7], as
well as RT-SVC models trained with and without adversarial loss
terms (RT-SVC and RT-SVCGAN , respectively). All systems are
trained at 22.05 kHz, using 2-second audio clips and a batch size
of 4. We use the Adam optimizer with a learning rate of 10−4

and train for 500,000 training steps. When leveraging adversarial
training, we train the generator for 50,000 steps before training
the discriminator. For subjective listening, we refer readers to our
demo website at https://sites.google.com/izotope.com/rtsvc-demo.

Table 1 reports L1 reconstruction error of log Mel spectro-
grams computed between inferred waveforms and their targets and
mean opinion scores (MOS) collected from participants within our
organization, across models trained on one of said singers. For the
latter, participants were asked to rate examples from 0 to 100, and
responses were rescaled to the conventional 1 to 5 scale. Overall,
11 people with proficient listening and varied musical experience
evaluated our models. Indeed, our offline model outperforms RT-
SVC models in terms of fidelity quantitatively and qualitatively. It
tends to reconstruct prolonged vowels more consistently, and gen-
erally exhibits less leakage of the input speaker identity. For added
perspective, we note that regardless of the neural filter model, the
use of our proprietary high-latency phase vocoder pitch shifting
algorithm can noticeably and universally affect fidelity as well,
experiencing fewer audio artifacts across consonants and vowels
relative to our Lent implementation. Nonetheless, our real-time
model is over 10 times smaller, and when paired with the Lent
pitch shifter, is amenable to streaming applications. Lastly, while
RT-SVCGAN achieves worse average L1 performance than RT-
SVC, it produces more plausible outputs, as per its higher MOS
score (see supplemental figures on our website for details).

5. CONCLUSIONS

We proposed an approach for real-time SVC and implemented it as
a streaming plug-in. The method combines pitch shifting of the in-
put signal and timbral transformation provided by a deep learning
model. The novelty of the method is that it acts directly on the in-
put signal instead of synthesizing a new waveform, reducing com-
plexity and preserving the pitch of the original signal. As such,
the model can extend to sampling rates beyond the nominal rate
used by its deep learning model component. In future work, we
are interested in improving excitation signal modeling, and specif-
ically, to see if it is possible to inject the pitch shifting algorithm
"in-the-loop" during training to improve fidelity. We would also
like to improve acoustic feature/filter modeling for the real-time
case, potentially leveraging recent advances on integrating stream-
ing convolutional layers and related architectures [17].
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