Download Beat-Marker Location using a Probabilistic Framework and Linear Discriminant Analysis
This paper deals with the problem of beat-tracking in an audiofile. Considering time-variable tempo and meter estimation as input, we study two beat-tracking approaches. The first one is based on an adaptation of a method used in speech processing for locating the Glottal Closure Instants. The results obtained with this first approach allow us to derive a set of requirements for a robust approach. This second approach is based on a probabilistic framework. In this approach the beat-tracking problem is formulated as an “inverse” Viterbi decoding problem in which we decode times over beat-numbers according to observation and transition probabilities. A beat-template is used to derive the observation probabilities from the signal. For this task, we propose the use of a machine-learning method, the Linear Discriminant Analysis, to estimate the most discriminative beat-template. We finally propose a set of measures to evaluate the performances of a beattracking algorithm and perform a large-scale evaluation of the two approaches on four different test-sets.
Download Local Key estimation Based on Harmonic and Metric Structures
In this paper, we present a method for estimating the local keys of an audio signal. We propose to address the problem of local key finding by investigating the possible combination and extension of different previous proposed global key estimation approaches. The specificity of our approach is that we introduce key dependency on the harmonic and the metric structures. In this work, we focus on the relationship between the chord progression and the local key progression in a piece of music. A contribution of our work is that we address the problem of finding a good analysis window length for local key estimation by introducing information related to the metric structure in our model. Key estimation is not performed on empirical-chosen segment length but on segments that are adapted to the analyzed piece and independent from the tempo. We evaluate and analyze our results on a new database composed of classical music pieces.