Download On the Equivalence of Integrator- and Differentiator-Based Continuous- and Discrete-Time Systems
The article performs a generic comparison of integrator- and differentiator based continuous-time systems as well as their discretetime models, aiming to answer the reoccurring question in the music DSP community of whether there are any benefits in using differentiators instead of conventionally employed integrators. It is found that both kinds of models are practically equivalent, but there are certain reservations about differentiator based models.
Download An Audio-Visual Fusion Piano Transcription Approach Based on Strategy
Piano transcription is a fundamental problem in the field of music information retrieval. At present, a large number of transcriptional studies are mainly based on audio or video, yet there is a small number of discussion based on audio-visual fusion. In this paper, a piano transcription model based on strategy fusion is proposed, in which the transcription results of the video model are used to assist audio transcription. Due to the lack of datasets currently used for audio-visual fusion, the OMAPS data set is proposed in this paper. Meanwhile, our strategy fusion model achieves a 92.07% F1 score on OMAPS dataset. The transcription model based on feature fusion is also compared with the one based on strategy fusion. The experiment results show that the transcription model based on strategy fusion achieves better results than the one based on feature fusion.
Download Quality Diversity for Synthesizer Sound Matching
It is difficult to adjust the parameters of a complex synthesizer to create the desired sound. As such, sound matching, the estimation of synthesis parameters that can replicate a certain sound, is a task that has often been researched, utilizing optimization methods such as genetic algorithm (GA). In this paper, we introduce a novelty-based objective for GA-based sound matching. Our contribution is two-fold. First, we show that the novelty objective is able to improve the quality of sound matching by maintaining phenotypic diversity in the population. Second, we introduce a quality diversity approach to the problem of sound matching, aiming to find a diverse set of matching sounds. We show that the novelty objective is effective in producing high-performing solutions that are diverse in terms of specified audio features. This approach allows for a new way of discovering sounds and exploring the capabilities of a synthesizer.
Download Higher-Order Anti-Derivatives of Band Limited Step Functions for the Design of Radial Filters in Spherical Harmonics Expansions
This paper presents a discrete-time model of the spherical harmonics expansion describing a sound field. The so-called radial functions are realized as digital filters, which characterize the spatial impulse responses of the individual harmonic orders. The filter coefficients are derived from the analytical expressions of the timedomain radial functions, which have a finite extent in time. Due to the varying degrees of discontinuities occurring at their edges, a time-domain sampling of the radial functions gives rise to aliasing. In order to reduce the aliasing distortion, the discontinuities are replaced with the higher-order anti-derivatives of a band-limited step function. The improved spectral accuracy is demonstrated by numerical evaluation. The proposed discrete-time sound field model is applicable in broadband applications such as spatial sound reproduction and active noise control.
Download Alloy Sounds: Non-Repeating Sound Textures With Probabilistic Cellular Automata
Contemporary musicians commonly face the challenge of finding new, characteristic sounds that can make their compositions more distinct. They often resort to computers and algorithms, which can significantly aid in creative processes by generating unexpected material in controlled probabilistic processes. In particular, algorithms that present emergent behaviors, like genetic algorithms and cellular automata, have fostered a broad diversity of musical explorations. This article proposes an original technique for the computer-assisted creation and manipulation of sound textures. The technique uses Probabilistic Cellular Automata, which are yet seldom explored in the music domain, to blend two audio tracks into a third, different one. The proposed blending process works by dividing the source tracks into frequency bands and then associating each of the automaton’s cell to a frequency band. Only one source, chosen by the cell’s state, is active within each band. The resulting track has a non-repeating textural pattern that follows the changes in the Cellular Automata. This blending process allows the musician to choose the original material and the blend granularity, significantly changing the resulting blends. We demonstrate how to use the proposed blending process in sound design and its application in experimental and popular music.
Download Simulating a Hexaphonic Pickup Using Parallel Comb Filters for Guitar Distortion
This paper introduces hexaphonic distortion as a way of achieving harmonically rich guitar distortion while minimizing intermodulation products regardless of playing style. The simulated hexaphonic distortion effect described in this paper attempts to reproduce the characteristics of hexaphonic distortion for use with ordinary electric guitars with mono pickups. The proposed approach uses a parallel comb filter structure that separates a mono guitar signal into its harmonic components. This simulates the six individual string signals obtained from a hexaphonic pickup. Each of the signals are then individually distorted with oversampling used to avoid aliasing artifacts. Starting with the baseline of the distorted mono signal, the simulated distortion produces fewer intermodulation products with a result approaching that of hexaphonic distortion.
Download Optimal Integer Order Approximation of Fractional Order Filters
Fractional order filters have been studied since a long time, along with their applications to many areas of physics and engineering. In particular, several solutions have been proposed in order to approximate their frequency response with that of an ordinary filter. In this paper, we tackle this problem with a new approach: we solve analytically a simplified version of the problem and we find the optimal placement of poles and zeros, giving a mathematical proof and an error estimate. This solution shows improved performance compared to the current state of the art and is suitable for real-time parametric control.
Download Amp-Space: A Large-Scale Dataset for Fine-Grained Timbre Transformation
We release Amp-Space, a large-scale dataset of paired audio samples: a source audio signal, and an output signal, the result of a timbre transformation. The types of transformations we study are from blackbox musical tools (amplifiers, stompboxes, studio effects) traditionally used to shape the sound of guitar, bass, or synthesizer sounds. For each sample of transformed audio, the set of parameters used to create it are given. Samples are from both real and simulated devices, the latter allowing for orders of magnitude greater data than found in comparable datasets. We demonstrate potential use cases of this data by (a) pre-training a conditional WaveNet model on synthetic data and show that it reduces the number of samples necessary to digitally reproduce a real musical device, and (b) training a variational autoencoder to shape a continuous space of timbre transformations for creating new sounds through interpolation.
Download Topologizing Sound Synthesis via Sheaves
In recent years, a range of topological methods have emerged for processing digital signals. In this paper we show how the construction of topological filters via sheaves can be used to topologize existing sound synthesis methods. I illustrate this process on two classes of synthesis approaches: (1) based on linear-time invariant digital filters and (2) based on oscillators defined on a circle. We use the computationally-friendly approach to modeling topologies via a simplicial complex, and we attach our classical synthesis methods to them via sheaves. In particular, we explore examples of simplicial topologies that mimic sampled lines and loops. Over these spaces we realize concrete examples of simple discrete harmonic oscillators (resonant filters), and simple comb filter based algorithms (such as Karplus-Strong) as well as frequency modulation.
Download Dynamic Grids for Finite-Difference Schemes in Musical Instrument Simulations
For physical modelling sound synthesis, many techniques are available; time-stepping methods (e.g., finite-difference time-domain (FDTD) methods) have an advantage of flexibility and generality in terms of the type of systems they can model. These methods do, however, lack the capability of easily handling smooth parameter changes while retaining optimal simulation quality and stability, something other techniques are better suited for. In this paper, we propose an efficient method to smoothly add and remove grid points from a FDTD simulation under sub-audio rate parameter variations. This allows for dynamic parameter changes in physical models of musical instruments. An instrument such as the trombone can now be modelled using FDTD methods, as well as physically impossible instruments where parameters such as e.g. material density or its geometry can be made time-varying. Results show that the method does not produce (visible) artifacts and stability analysis is ongoing.