Download Interacting With Digital Audio Effects Through a Haptic Knob With Programmable Resistance
Live music performances and music production often involve the manipulation of several parameters during sound generation, processing, and mixing. In hardware layouts, those parameters are usually controlled using knobs, sliders and buttons. When these layouts are virtualized, the use of physical (e.g. MIDI) controllers can make interaction easier and reduce the cognitive load associated to sound manipulation. The addition of haptic feedback can further improve such interaction by facilitating the detection of the nature (continuous / discrete) and value of a parameter. To this end, we have realized an endless-knob controller prototype with programmable resistance to rotation, able to render various haptic effects. Ten subjects assessed the effectiveness of the provided haptic feedback in a target-matching task where either visual-only or visual-haptic feedback was provided; the experiment reported significantly lower errors in presence of haptic feedback. Finally, the knob was configured as a multi-parametric controller for a real-time audio effect software written in Python, simulating the voltage-controlled filter aboard the EMS VCS3. The integration of the sound algorithm and the haptic knob is discussed, together with various haptic feedback effects in response to control actions.
Download Sitrano: A Matlab App for Sines-Transients-Noise Decomposition of Audio Signals
Decomposition of sounds into their sinusoidal, transient, and noise components is an active research topic and a widely-used tool in audio processing. Multiple solutions have been proposed in recent years, using time–frequency representations to identify either horizontal and vertical structures or orientations and anisotropy in the spectrogram of the sound. In this paper, we present SiTraNo: an easy-to-use MATLAB application with a graphic user interface for audio decomposition that enables visualization and access to the sinusoidal, transient, and noise classes, individually. This application allows the user to choose between different well-known separation methods to analyze an input sound file, to instantaneously control and remix its spectral components, and to visually check the quality of the separation, before producing the desired output file. The visualization of common artifacts, such as birdies and dropouts, is demonstrated. This application promotes experimenting with the sound decomposition process by observing the effect of variations for each spectral component on the original sound and by comparing different methods against each other, evaluating the separation quality both audibly and visually. SiTraNo and its source code are available on a companion website and repository.
Download Graph-Based Audio Looping and Granulation
In this paper we describe similarity graphs computed from timefrequency analysis as a guide for audio playback, with the aim of extending the content of fixed recordings in creative applications. We explain the creation of the graph from the distance between spectral frames, as well as several features computed from the graph, such as methods for onset detection, beat detection, and cluster analysis. Several playback algorithms can be devised based on conditional pruning of the graph using these methods. We describe examples for looping, granulation, and automatic montage.
Download Identification of Nonlinear Circuits as Port-Hamiltonian Systems
This paper addresses identification of nonlinear circuits for power-balanced virtual analog modeling and simulation. The proposed method combines a port-Hamiltonian system formulation with kernel-based methods to retrieve model laws from measurements. This combination allows for the estimated model to retain physical properties that are crucial for the accuracy of simulations, while representing a variety of nonlinear behaviors. As an illustration, the method is used to identify a nonlinear passive peaking EQ.
Download The Role of Modal Excitation in Colorless Reverberation
A perceptual study revealing a novel connection between modal properties of feedback delay networks (FDNs) and colorless reverberation is presented. The coloration of the reverberation tail is quantified by the modal excitation distribution derived from the modal decomposition of the FDN. A homogeneously decaying allpass FDN is designed to be colorless such that the corresponding narrow modal excitation distribution leads to a high perceived modal density. Synthetic modal excitation distributions are generated to match modal excitations of FDNs. Three listening tests were conducted to demonstrate the correlation between the modal excitation distribution and the perceived degree of coloration. A fourth test shows a significant reduction of coloration by the colorless FDN compared to other FDN designs. The novel connection of modal excitation, allpass FDNs, and perceived coloration presents a beneficial design criterion for colorless artificial reverberation.
Download Differentiable White-Box Virtual Analog Modeling
Component-wise circuit modeling, also known as “white-box” modeling, is a well established and much discussed technique in virtual analog modeling. This approach is generally limited in accuracy by lack of access to the exact component values present in a real example of the circuit. In this paper we show how this problem can be addressed by implementing the white-box model in a differentiable form, and allowing approximate component values to be learned from raw input–output audio measured from a real device.
Download One Billion Audio Sounds From Gpu-Enabled Modular Synthesis
We release synth1B1, a multi-modal audio corpus consisting of 1 billion 4-second synthesized sounds, paired with the synthesis parameters used to generate them. The dataset is 100x larger than any audio dataset in the literature. We also introduce torchsynth, an open source modular synthesizer that generates the synth1B1 samples on-the-fly at 16200x faster than real-time (714MHz) on a single GPU. Finally, we release two new audio datasets: FM synth timbre and subtractive synth pitch. Using these datasets, we demonstrate new rank-based evaluation criteria for existing audio representations. Finally, we propose a novel approach to synthesizer hyperparameter optimization.
Download A Generative Model for Raw Audio Using Transformer Architectures
This paper proposes a novel way of doing audio synthesis at the waveform level using Transformer architectures. We propose a deep neural network for generating waveforms, similar to wavenet . This is fully probabilistic, auto-regressive, and causal, i.e. each sample generated depends on only the previously observed samples. Our approach outperforms a widely used wavenet architecture by up to 9% on a similar dataset for predicting the next step. Using the attention mechanism, we enable the architecture to learn which audio samples are important for the prediction of the future sample. We show how causal transformer generative models can be used for raw waveform synthesis. We also show that this performance can be improved by another 2% by conditioning samples over a wider context. The flexibility of the current model to synthesize audio from latent representations suggests a large number of potential applications. The novel approach of using generative transformer architectures for raw audio synthesis is, however, still far away from generating any meaningful music similar to wavenet, without using latent codes/meta-data to aid the generation process.
Download Non-Iterative Schemes for the Simulation of Nonlinear Audio Circuits
In this work, a number of numerical schemes are presented in the context of virtual-analog simulation. The schemes are linearlyimplicit in character, and hence directly solvable without iterative methods. Schemes of increasing order of accuracy are constructed, and convergence and stability conditions are proven formally. The schemes are able to handle stiff problems very efficiently, because of their fast update, and can be run at higher sample rates to reduce aliasing. The cases of the diode clipper and ring modulator are investigated in detail, including several numerical examples.
Download Real-Time Implementation of a Friction Drum Inspired Instrument Using Finite Difference Schemes
Physical modelling sound synthesis is a powerful method for constructing virtual instruments aiming to mimic the sound of realworld counterparts, while allowing for the possibility of engaging with these instruments in ways which may be impossible in person. Such a case is explored in this paper: particularly the simulation of a friction drum inspired instrument. It is an instrument played by causing the membrane of a drum head to vibrate via friction. This involves rubbing the membrane via a stick or a cord attached to its center, with the induced vibrations being transferred to the air inside a sound box. This paper describes the development of a real-time audio application which models such an instrument as a bowed membrane connected to an acoustic tube. This is done by means of a numerical simulation using finite-difference time-domain (FDTD) methods in which the excitation, whose position is free to change in real-time, is modelled by a highly non-linear elasto-plastic friction model. Additionally, the virtual instrument allows for dynamically modifying physical parameters of the model, thereby allowing the user to generate new and interesting sounds that go beyond a realworld friction drum.