
Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

GRAPH-BASED AUDIO LOOPING AND GRANULATION

Gerard Roma , Pierre Alexandre Tremblay and Owen Green

CeReNeM
University of Huddersfield

Huddersfield, UK
n.surname@hud.ac.uk

ABSTRACT

In this paper we describe similarity graphs computed from time-
frequency analysis as a guide for audio playback, with the aim
of extending the content of fixed recordings in creative applica-
tions. We explain the creation of the graph from the distance be-
tween spectral frames, as well as several features computed from
the graph, such as methods for onset detection, beat detection, and
cluster analysis. Several playback algorithms can be devised based
on conditional pruning of the graph using these methods. We de-
scribe examples for looping, granulation, and automatic montage.

1. INTRODUCTION

Short sound recordings, around the length of words and sentences,
are used in the creative stages of many forms of audio and music
production. Extending the these snippets in time has many appli-
cations, such as creating different musical gestures, or simulation
of realistic sound textures and sound effects in cinema or video
games. The general idea of extending sounds in time is almost as
old as recording technology and can be traced back to tape loops
and early approaches to granulation [1].

In the general case, the possibilities are not limited to a fixed
objective such as the synthesis of a known sound, but very often
emerge from the qualities of the sample at hand. Thus, automatic
audio analysis can be used to leverage the inner structure, textures
or objects in a given recording in an interactive setting. In popu-
lar platforms such as digital audio workstations and audio editing
suites, it has become common to conflate the reading of a sound
file with a time-frequency analysis that enables playback capabili-
ties such as time scale modification.

One particular possibility of time-frequency analysis is com-
puting similarity between frames. This has been extensively ex-
ploited by concatenative synthesis, either guided by some target
sequence [2] or interactive exploration of a corpus of grains or
short sounds [3]. On the other hand, content-based structural anal-
ysis has been used most often in the context of music informa-
tion retrieval (MIR). In this paper, we explore using content-based
structural analysis of audio for facilitating different playback algo-
rithms that can be used to extend the content of a recorded sound
in time. In particular, we propose using networks of similarity
between different points in the spectrogram. We describe three al-
gorithms: one for automatic looping, one for granular synthesis
and one for automatic montage, and provide implementations for
the Max and SuperCollider environments.

Copyright: © 2021 Gerard Roma et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

In the next section we review existing work related to the pro-
posed approach. In Section 3, we detail the analysis framework.
Section 4 describes the playback algorithms and their implemen-
tation. Some examples of using the proposed algorithms are pre-
sented in Section 5. We then conclude and outline future direc-
tions.

2. RELATED WORK

The idea of concatenating time-frequency frames based on similar-
ity has been extensively used under the framework of corpus-based
concatenative synthesis (CBCS) [4]. In CBCS the framework usu-
ally considers the audio material as an (ideally large) database of
units with a focus on specifying the resulting sound. Here our fo-
cus is in the opposite direction: we aim to obtain different ways of
extending short snippets interactively, with an interest in existing
gestures and textures, using common paradigms such as looping
and granulation. Several works have studied these tasks in a simi-
lar ways, based on time-frequency analysis and similarity graphs.

The idea of automating the creation of music loops from audio
was proposed in [5], where an algorithm that found repetitive sec-
tions was presented. This problem is similar to other MIR tasks,
such as finding the chorus in a pop song. In practice, however,
loops are often devised to create new rhythmic structures even if
the original audio does not contain a repetition. A user interface
for automatic and semi-automatic loop editing was proposed more
recently, using a very basic analysis algorithm [6]. We propose a
more detailed algorithm that can be used interactively, addressing
both the issue of seamless concatenation points and the possibility
of leveraging existing repetitive content.

The proposed algorithms for granulation and montage are re-
lated to existing work on texture synthesis, particularly algorithms
based on CBCS. Several algorithms were evaluated in [7]. Among
these, the Montage Synthesis (MS) algorithm, is perhaps the clos-
est to our approach, although its focus is concatenating larger seg-
ments for realistic texture synthesis and audio inpainting [8]. An-
other algorithm for inpainting was presented in [9], based on prun-
ing the similarity graph. Our algorithms are similarly based on
graph pruning but, instead of inpainting missing audio fragments
with realistic reproductions, our focus is on interactive control of
real-time playback. With respect to prior work, a particularly novel
aspect of our approach is the use of spectral clustering of the graph
to identify regions of similar sounds. This allows random naviga-
tion of the similarity graph to provide some variation, while retain-
ing some stability in the qualities of the resulting texture.

Our approach is also similar in spirit to the algorithm in [10],
in that it allows extending the stationary part of sounds, although
here we use a time-frequency concatenative approach instead of
convolution with noise.

DAFx.1

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

253

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

3. ANALYSIS

The proposed framework is based on time-frequency analysis us-
ing the short-time Fourier transform (STFT). We assume a pre-
liminary analysis step resulting in a static data structure, which is
used during real-time playback. From the STFT frames we ex-
tract a lower dimensional perceptual representation that is used to
construct a self-similarity matrix (SSM). From this matrix we can
extract some basic functions, such as an onset detection function
and the beat spectrum. The SSM is then thresholded into a re-
currence plot, which is interpreted as the adjacency matrix of the
similarity graph.

3.1. Feature extraction

The STFT of the signal is given by

X(m, k) =

N−1∑
n=0

x(n+mH)w(n)e−j 2πkn
N (1)

where n is the sample index, m is the spectral frame index, H is
the hop size, k is the frequency bin index, and w is a window func-
tion, such as the Hann window. In order to compute the similarity
between spectral frames we need a low-dimensional representa-
tion that relates to human perception. While many descriptors have
been used in the concatenative synthesis literature to encode differ-
ent perceptual features we are interested in a general representation
that can be used to assess the similarity between audio spectra re-
gardless of their content. We use the Mel filterbank, which is one
of the most widely used representations for audio:

M(m, f) =

F−1∑
f=0

Mfb(k, f)|X(m, k)|, (2)

where Mfb is a matrix of F triangular filters scaled along the Mel
frequency scale. The number of filters can be tuned to the required
resolution (along with the size of the FFT window) in the analysis
stage, depending on the sound. Figure 1 shows the Mel spectro-
gram of a drum loop which is used throughout this section.

Figure 1: Mel spectrogram of a drum loop.

3.2. Self-similarity matrix

In order to compute the similarity between two frames, Mi and
Mj , in the Mel spectrogram, we use the Jensen-Shannon (JS) dis-
tance:

DJS(Mi,Mj) = (
1

2
DKL(M̂i||M̂k) +

1

2
DKL(M̂j ||M̂k))

1
2 ,

(3)
where

M̂k =
1

2
(M̂i + M̂j), (4)

M̂x =
Mx∑
Mx

, (5)

and DKL is the Kullback-Leibler (KL) divergence:

DKL(P ||Q) =
∑

P (x)log(P (x)/Q(x)) (6)

The KL divergence is frequently used for audio features. In partic-
ular, it was found to perform well in early concatenative synthesis
experiments [11]. The JS distance provides a symmetric version
with all the properties of a metric, and is conveniently bounded be-
tween 0 and 1 [12]. In initial experiments, we found this distance
resulted in similar visual patterns as the cosine distance used in
[13]. Like the cosine distance, it is normalised with respect to the
magnitude of each frame (here in order to represent a probability
distribution). At the same time, following subjective assessment,
we found it would give better perceptual results when used with a
threshold to allow concatenation of frames from different locations
with low distance.

The similarity between two spectral frames is then computed
as:

SSM(i, j) = 1−DJS(Mi,Mj). (7)

Eq. 7 defines a self-similarity matrix that shows some patterns in
the sound [13]. An example is shown in Figure 2.

0 200 400 600 800

0

200

400

600

800

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2: Self-similarity matrix.

DAFx.2

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

254

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

3.3. Useful measures from the SSM

The main diagonal of the SSM is simply the similarity of each
frame to itself. The superdiagonal represents the similarity of each
frame to the next. Thus, it can be used to obtain an onset detection
function ODF (i) = 1− SSM(i, i+ 1). The advantage of using
the same distance measure throughout is that is that it is consis-
tent with the rest of the framework and the threshold used for the
similarity, which we use as concatenation cost. As such, onsets
will normally signal a disruption in the connections corresponding
to successive frames. However, since the distance is normalised,
it can be noisy at low amplitude values. This is common in other
onset detection functions [14]. We post-process the ODF by re-
moving a median-filtered version and clipping it below zero. We
also remove peaks that are closer than 100ms to a previous peak.
Figure 3 shows an example of the post-processed ODF.

0.0 0.5 1.0 1.5 2.0 2.5
time (seconds)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

OD
F

Figure 3: Onset detection function from the SSM diagonal.

Another useful measure that can be obtained from the SSM is
the beat spectrum, defined as the sum of diagonals [13] (Figure 4):

BS(l) =
1

I − l

I−l−1∑
i=0

SSM(i, i+ l), (8)

where I is the total number of frames. The sample at BS(l) is the
average similarity between frames separated by lag l. Thus, peaks
represent periodicities in the original audio, which can be used to
automatically find loop points that capture existing rhythms. In
practice, the prominence of peaks depends on whether the audio is
repetitive or not. For rhythmic audio, the peaks are very clear and
are often found at durations that are multiples of the same basic
beat. For short recordings we pick the earliest of the k highest
peaks of the first half of the beat spectrum (typically with a value
of k = 3), in order to obtain a small quantisation beat.

3.4. Recurrence plot

Finally, the SSM is thresholded to obtain the recurrence plot (RP)
(Figure 5):

RP (i, j) =

{
1, if SSM(i, j) ≥ ϵ
0, otherwise

}
, (9)

where ϵ is a threshold parameter. The dots in RP define com-
binations of spectral frames with high similarity. The recurrence

0.0 0.5 1.0 1.5 2.0 2.5
time (seconds)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BS

Figure 4: Beat spectrum.

plot can also be seen as the adjacency matrix of a similarity graph,
which we also use to define potential transitions for playback. A
circular graph layout such as in Figure 6 provides a more intu-
itive representation of the graph as a transition network (here a
high threshold was used to generate fewer links for illustration
purposes). Nodes in the graph represent spectral frames. The cir-
cular layout corresponds to the original order (thus, here, implying
a general loop). The rest of the links can be thought as ‘worm-
holes’, or shortcuts, which provide potential alternative playback
paths. The graph could also be defined through a nearest neigh-
bours algorithm. However, here the parameter ϵ can be seen as a
constant bound for the transition cost and is also a useful tradeoff:
a higher value will create a sparser RP with fewer transitions. A
low threshold will allow more transitions but with higher potential
for perceived discontinuity.

0 200 400 600 800

0

200

400

600

800

Figure 5: Recurrence plot.

DAFx.3

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

255

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

Figure 6: Circular view of the graph as a transition network.

3.5. Spectral clustering

The graph obtained in the previous section can also be used to
cluster the frames via spectral clustering [15]. In order to preserve
the information about similarities, we use a weighted version of
the adjacency matrix RP :

R̂P (i, j) = RP (i, j)⊙ SSM(i, j), (10)

where ⊙ is the element-wise product.
The weights in R̂P are the similarities of each frame with the

others above the given threshold. The degree of frame i is the sum
of the weights,

di =

L−1∑
j=0

R̂P (i, j), (11)

The symmetric normalized laplacian is then

Lsym = D− 1
2LD− 1

2 , (12)

where D is the diagonal matrix formed with the degrees of the
frames d0...dI−1 along the diagonal. We compute the first l eigen-
vectors and eigenvalues of Lsym (where l is the maximum number
of clusters). The number of clusters c can be specified manually as
a parameter, or automatically estimated by the eigengap method
[15], by looking at the largest gap between consecutive eigenval-
ues up to l. The clusters are then obtained by running the k-means
algorithm for the first c eigenvectors (here used as features for each
of the spectral frames and row-normalised) [16].

4. GRAPH-BASED AUDIO PLAYBACK

As described in the previous sections, in this paper we propose
using the similarity graph as a general mechanism for audio play-

back. The general principle is to move a playback head over spec-
tral frames, selected by traversing the graph, which are then syn-
thesised via the inverse STFT. Depending on the sound and the
chosen threshold, there may still be many links. Several algo-
rithms are possible based on different ways of pruning the graph.
We provide three examples focusing on looping, granulation and
automatic montage. It is worth noting that pruning can be sim-
ply implemented by removing rows and columns in R̂P . Given
its simplicity, this process could eventually be presented as a user
interface.

The three algorithms are implemented as externals for the Max
and SuperCollider languages, using the Fluid Corpus Manipula-
tion Toolbox[17, 18]. The implementation can be obtained from
github.1

All three algorithms include an initial analysis step in which
the Mel spectrogram and similarity graph are computed. The graph
is then pruned using different strategies for each object. After the
analysis, the playback guided by the graph can be controlled in
real time. We now describe each of the algorithms in more detail.

4.1. Looping

Looping is used in many musical genres, often based on repetition
and rhythm. The choice of a looping region may be influenced by
existing periodicities in the audio, although it is also possible that
there are none, or that new rhythms are created by the loop itself.
The choice of the looping region can thus be seen as a dialogue
between the user and the audio content. We propose to represent
this dialogue as a search process: the user makes an initial query
of loop start and end points, and the system proposes an alternative
set of start and en points based on the audio content.

4.1.1. Analysis

In the analysis, phase, R̂P is computed using a threshold param-
eter.2 A quantised mode is provided as an option that will use the
earliest detected peak in the beat spectrum to remove links that are
not multiples of the detected beat. Since this may end up with a
very small number of links, all multiples of the beat that start in a
frame labelled as an onset are added to R̂P in the quantised mode.
Onsets are detected as peaks in the ODF defined in Section 3.3.
We then fit a KD-Tree index [19] to the 2D points in the upper
triangle of the symmetric matrix R̂P (Figure 5).

4.1.2. Playback

During playback the play head generally follows the original order
of frames, and jumps at the loop positions. The user can specify a
query point in real time. Every query point (ls0, le0) is represented
in the same 2D space as the indexed transitions, so the system
returns the nearest neighbour (ls1, le1). This can be useful for
simplifying the selection of loop points for beginners, or for more
sophisticated loop-based playback by modulating the query point.

4.2. Granulation

Granular synthesis is often used to create textures and tones, often
using some random variation of parameters. Here, we are con-

1https://github.com/flucoma/graph_loop_grain
2Note that in all the implemented objects, the threshold parameter is

defined over distance instead of similarity

DAFx.4

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

256

