Download A Direct Microdynamics Adjusting Processor with Matching Paradigm and Differentiable Implementation
In this paper, we propose a new processor capable of directly changing the microdynamics of an audio signal primarily via a single dedicated user-facing parameter. The novelty of our processor is that it has built into it a measure of relative level, a short-term signal strength measurement which is robust to changes in signal macrodynamics. Consequent dynamic range processing is signal level-independent in its nature, and attempts to directly alter its observed relative level measurements. The inclusion of such a meter within our proposed processor also gives rise to a natural solution to the dynamics matching problem, where we attempt to transfer the microdynamic characteristics of one audio recording to another by means of estimating appropriate settings for the processor. We suggest a means of providing a reasonable initial guess for processor settings, followed by an efficient iterative algorithm to refine upon our estimates. Additionally, we implement the processor as a differentiable recurrent layer and show its effectiveness when wrapped around a gradient descent optimizer within a deep learning framework. Moreover, we illustrate that the proposed processor has more favorable gradient characteristics relative to a conventional dynamic range compressor. Throughout, we consider extensions of the processor, matching algorithm, and differentiable implementation for the multiband case.
Download Real-Time Singing Voice Conversion Plug-In
In this paper, we propose an approach to real-time singing voice conversion and outline its development as a plug-in suitable for streaming use in a digital audio workstation. In order to simultaneously ensure pitch preservation and reduce the computational complexity of the overall system, we adopt a source-filter methodology and consider a vocoder-free paradigm for modeling the conversion task. In this case, the source is extracted and altered using more traditional DSP techniques, while the filter is determined using a deep neural network. The latter can be trained in an end-toend fashion and additionally uses adversarial training to improve system fidelity. Careful design allows the system to scale naturally to sampling rates higher than the neural filter model sampling rate, outputting full-band signals while avoiding the need for resampling. Accordingly, the resulting system, when operating at 44.1 kHz, incurs under 60 ms of latency and operates 20 times faster than real-time on a standard laptop CPU.