Download Time-Domain Chroma Extraction
In this paper, a novel chroma extraction technique called TimeDomain Chroma Extraction (TDCE) is introduced. In comparison to many other known schemes, the calculation of a time-frequency representation is unnecessary since the TDCE is a pure sample-bysample technique. It mainly consists of a pitch tracking module that is implemented with a phase-locked loop (PLL). A set of 24 bandpass filters over two octaves is designed with the F 0 output of the pitch tracker to estimate a chroma vector. To verify the performance of the TDCE, a simple chord recognition algorithm is applied to the chroma output. The experimental results show that this novel time-domain chroma extraction technique yields good results while requiring only minor complexity and thus, enables the extraction of musical features in real-time on low-cost DSP platforms.
Download Comparison of Various Predictors for Audio Extrapolation
In this study, receiver-based audio error concealment in the context of low-latency Audio over IP transmission is analyzed. Therefore, the well-known technique of audio extrapolation is investigated concerning its usability in real-time scenarios, its applied prediction techniques and various transmission parameters. A large-scale automated evaluation with PEAQ and a MUSHRA listening test reveal the performance of the various extrapolation setups. The results show the suitability of extrapolation to perform audio error concealment in real-time and the qualitative superiority of block based methods over sample based methods.
Download Physical Modeling of the MXR Phase 90 Guitar Effect Pedal
In this study, a famous boxed effect pedal, also called stompbox, for electrical guitars is analyzed and simulated. The nodal DK method is used to create a non-linear state-space system with Matlab as a physical model for the MXR Phase 90 guitar effect pedal. A crucial component of the effect are Junction Field Effect Transistors (JFETs) which are used as variable resistors to dynamically vary the phase-shift characteristic of an allpass-filter cascade. So far, virtual analog modeling in the context of audio has mainly been applied to diode-clippers and vacuum tube circuits. This work shows an efficient way of describing the nonlinear behavior of JFETs, which are wide-spread in audio devices. To demonstrate the applicability of the proposed physical model, a real-time VST audio plug-in was implemented.
Download Signal-Matched Power-Complementary Cross-Fading and Dry-Wet Mixing
The blending of audio signals, called cross-fading, is a very common task in audio signal processing. Therefore, digital audio workstations offer several fading curves to select from. The choice of the fading curve typically depends on the signal characteristics and is supposed to result in a mixed signal featuring power and loudness close to the input signals. This work derives a correlationbased design of the fading curves to achieve exact power consistency to avoid audible fluctuations of the signal’s loudness. This principle is extended to the problem of mixing original signals with effect-processed signals using the dry-wet balance. Weighting coefficients for dry and wet signals are derived which realize the desired dry-wet balance but maintain the signal power.