The Feathered Clarinet Reed

Tamara Smyth; Jonathan Abel; Julius O. Smith
DAFx-2004 - Naples
In this research, a method previously In this research, a method previouslyapplied appliedtotoimprove improve a digital simulation of the avian syrinx is adapted to the geometry of the clarinet reed. The clarinet model is studied with particular attention to the case when the reed beats again the lay of the mouthpiece, closing off air flow to the bore once each period. In place of the standard reed table which gives steady-state volume flow as a function of constant pressure difference across the reed, a more realistic dynamic volume flow model is proposed. The differential equation governing volume flow dynamics is seen to have a singularity at the point of reed closure, where both the volume flow and reed channel area become zero. The feathered clarinet reed refers to the method, first used in the syrinx, to smooth or feather the volume flow cutoff in a closing valve. The feathered valve eliminates the singularity and reduces artifacts in the simulated clarinet output.