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ABSTRACT

This research presents a model of the avian vocal tract, imple-
mented using classical waveguide synthesis and numerical meth-
ods. The vocal organ of the songbird, the syrinx, has a unique
topography of acoustic tubes (a trachea with a bifurcation at its
base) making it a rather unique subject for waveguide synthesis.
In the upper region of the two bifid bronchi lies a nonlinear vi-
brating membrane – the primary resonator in sound production.
Unlike most reed musical instruments, the more significant dis-
placement of the membrane is perpendicular to the directions of
airflow, due to the Bernoulli effect. The model of the membrane
displacement, and the resulting pressure through the constriction
created by the membrane motion, is therefore derived beginning
with the Bernoulli equation.

1. INTRODUCTION

Birdsong is commonly associated with the sounds of a flute – ev-
idence of this can be found in the titles many composers have
given their works that feature the flute: Vivaldi’s flute concerto
Il gardellino (“The Goldfinch”), Debussey’s Syrinx for flute solo,
and Messiaen’s work for flute and piano, Merle noire (“Black-
bird”) are only a few examples.

The pure, often high pitched, tone of the songbird is undeni-
ably flute-like. It is, perhaps, this pure tone quality that led to so
much debate in the literature regarding its actual method of sound
production. The theory that the sound was produced by an aerody-
namic whistle effect has been widely confuted [7, 1, 2]. The avian
vocal tract uses a nonlinear vibrating membrane as its primary ex-
citation mechanism. The syringeal membrane, much like the vocal
folds in the human vocal tract, form a vibrating valve, the output of
which is filtered by the trachea, amplifying and attenuating certain
modes of the vibrating membrane.

Though the modeling methods described here are generally
used for the synthesis of musical instruments, their use in modeling
the bird’s unique vocal system offers a configuration of acoustic
elements not found in traditional musical instruments.

2. THE AVIAN VOCAL TRACT

The syrinx is the bird’s unique vocal organ. It consists of an airway
– a trachea which divides into the left and right bronchus at its base
(Fig. 1), and two pressure-controlled valves made of flexible mem-
branes, the tensions of which are altered by surrounding muscles
[8]. The neural control of the muscles and the bird’s respiratory
mechanics both greatly contribute to how sound is modulated by
the syrinx [2].
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Figure 1: The syrinx.

Airflow in the syrinx begins from the lungs and passes through
the bronchi, trachea and mouth before radiating from the beak
(Fig. 2). On its way, the airflow passes through the bird’s pri-
mary vocal organ, a non-linear vibrating membrane, situated just
below the junction of the two bronchi with the trachea (Fig. 2).
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Figure 2: Block diagram of avian vocal tract.

2.1. The Syringeal Membrane

When the bird is at rest, the syringeal membrane lies flat on the
wall of the bronchus. When singing begins, the membrane vi-
brates, with motion occurring primarily toward the opposite carti-
laginous wall (Fig. 3). This creates a narrowing in the bronchus
(with the possibility of closing the air passage completely), and a
constriction through which the air flows.

The motion of the syringeal membrane can be described by
two of the three configurations for pressure-controlled valves in
acoustic tubes [4]. The three possible configurations are: 1) The
reed is blown closed (as in woodwind instruments). 2) The reed
is blown open (as in the human larynx). 3) The transverse model
– the Bernoulli pressure causes the valve to close, perpendicular
to the direction of airflow [6, 4]. Though the syrinx uses both
configurations 2 and 3, as does the human voice, the third tends
to be most significant and is used as the model for implement-
ing the membrane’s motion. It is interesting to note that this third
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configuration does not seem to be employed as significantly by
traditional musical instruments [4]. A musical exploration of this
model could, therefore, make new contributions to the synthesis of
new sounds in computer music.

2.1.1. The Membrane Modeled as the Transverse Configura-
tion of a Pressure Controlled Valve

In voiced song (as opposed to whistled song), the membrane is set
into motion by airflow. Like any mechanical resonator, it vibrates
at a frequency controlled partly by its natural frequency (deter-
mined by its mass and tension) and partly by the resonance of the
air column to which which it is connected.

The model of the syringeal membrane, the nonlinearity (NL in
Fig. 2), determines the pressure on the tracheal side of the constric-
tion (p1) based on a given input pressure (p0) from the bronchial
side. p1 becomes the input pressure to the waveguide that simu-
lates the trachea.
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Figure 3: The pressure-controlled valve in the syrinx.

The nonlinear junction of the bronchi to the trachea was devel-
oped following the acoustic model by Fletcher of airflow through
the syringeal constriction [3, 5]. The model has the following four
key variables, all of which vary over time during sound production.

p0 , pressure on the bronchial side of the constriction
U , air volume flow through the syrinx
x , displacement of the membrane
p1 , pressure on the tracheal side of the constriction

2.1.2. Bronchial pressure (p0)

The bronchus is considerably shorter than the trachea (approxi-
mately one tenth its length). If modeled using waveguide synthesis
at audio sampling rates, a delayline of less than 2 samples would
be required. It is preferable, therefore, to treat the bronchus as hav-

ing a volume (V ) and an acoustic stiffness �c
2

V
. The rate at which

pressure builds up in the bronchus (dp0
dt

) is then proportional to the
difference in volume velocity flowing in (pG�p0

ZG
) and flowing out

(U ) of the constriction.

dp0

dt
=

�
�c

2

V

��
pG � p0

ZG
� U

�
(1)

where,

ZG , impedance of the air sacs
� , air density
V , volume of the bronchus

c , speed of sound (in air)

2.1.3. Volume flow (U)

Since the motion of the membrane causes varying heights in the
constriction, Bernoulli’s equation (2) is used to determine the pres-
sure at a given point y:

p(y) = p0 +
�

2

�
v
2

0 � v(y)
2
�

(2)

where v is the particle velocity at a given point, and is equal to the
volume velocity, U , divided by the cross-section area at that point.
That is,

v(y) =
U

2a
�
x+ (a� x)(

y

h
)2
� (3)

Since U likely forms a jet at y > 0, the pressure acting on
the entire tracheal half of the membrane is equal to the pressure at
the base of the trachea [3]. That is, the pressure at point y = 0 is
effectively p1.

Given that the area of the constriction at point y = 0 is 2ax,
(2) becomes
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�

2

"�
U

2�a2

�
2

�
�

U

2ax

�
2
#

(4)

which can be reduced to

p1 = p0 �
�

2

�
U

2ax

�2

(5)

when x� �a.
The final differential equation governing airflow is obtained

by incorporating the force used to accelerate air through the syrinx
[3] (this adds a pressure drop of �

2
p
ax

dU

dt
), and by rearranging the

equation to isolate dU

dt
:

dU

dt
=

2
p
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(6)

2.1.4. Membrane motion (x)

When x, the displacement of the membrane, is equal to zero, the
membrane is touching the opposite wall, and the constriction is
closed.

Fletcher writes the membrane’s motion for mode n as:

mn

�
d
2
xn

dt2
+ 2�

dxn

dt
+ !

2

n(xn � x0)

�
= �nF (7)

where

!n , the radian frequency of mode n
mn, the effective mass associated with mode n
� , the damping coefficient
�n , the coupling coefficient between F and mode n

and F is the force driving the fundamental mode of the membrane,
expressed as

F = ah(p0 + p1)�
2�U

2
h

7(ax)1:5
for x > 0 (8)
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In order to account for the damping that would occur should
the membrane actually touch the opposite wall, a factor E is in-
troduced into (7). Its actual value depends on the stickiness of the
contact between the membrane and the wall [3].

�! E� 10 � E � 100 if x � 0 (9)

When the membrane’s displacement becomes very large, sur-
rounding tissue will likely take part in the vibration [3]. To account
for this, the mass m from (7) is replaced with the following term,
so that the mass changes nonlinearly depending on the membrane’s
position (x).

m! m

�
1 + �

�
x� x0

h

�2�
(10)

The 2nd derivative of xn is isolated by rearranging (7) and, for
simplicity, the coupling coefficient (�) is made equal to unity.

d
2
xn

dt2
=

�F

mn

� 2�
dxn

dt
� !

2
(xn � x0) (11)

2.1.5. Tracheal pressure (p1)

The pressure leaving the constriction (p1) is proportional to the
volume velocity (U ), scaled by the characteristic impedance of the
trachea (Z0 =

�c

�a2
). In order to obtain the true pressure at the

base of the trachea, the pressure due to all previous reflections in
the trachea must also be considered. The flow diagram in Fig. 4 il-
lustrates how the junction between the constriction and the trachea
was implemented.
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Figure 4: Model of the interaction between the membrane and the
trachea.

The output of the lower rail is scaled by B to account for wall
losses of the pressure wave traveling through the trachea. B is
calculated according to the length of the tube and the attenuation

coefficient � =
1:2�10

�5
p
!

a
.

Radiation losses at the beak are accounted for using a lowpass
filter (LPF) (as wider pipes attenuate high frequencies) and then
negated to simulate the reflection of an open end tube.

2.2. Numerical methods

2.2.1. Backwards difference and the Trapezoid Rule

The following difference equations are commonly used for numer-
ically integrating differential equations:

x
0
[n] =

x[n]� x[n� 1]

T

x
00
[n] =

x[n� 2]� 2x[n� 1] + x[n]

T 2

(12)

where x0[n] and x
00
[n] are the first derivative and second deriva-

tives of x[n] respectively, and T is the sampling period. Since the
current model successfully isolates the derivatives of the variables
in question (and it is the instantaneous value of these variables that
we require), these equations are more conveniently expressed as
follows:

x[n] = x[n� 1] + x
0
[n]T

x
0
[n] = x

0
[n� 1] + x

00
[n]T

(13)

The accuracy of the backwards difference approximation is
dependent on T (the sampling period). That is, it is first order
accurate in T [9]. The first implementation of this model using
this method becomes very unstable when discretizing at an audio
sampling period (T = 1=44100).

The second implementation uses a more sophisticated algo-
rithm, which is second order accurate in T , and uses the trapezoid
rule for numeric integration [9, 10]. It yields the following dif-
ference equations (comparable to (13)), and solves the problem of
stability at larger sampling periods:
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2.2.2. Solving the model numerically

For the purpose of discussion, the model of the vibrating mem-
brane can be reduced to the differential equations (1), (6), (11).
Solving the system of equations is done as follows:

All variables and their derivatives are initialized to zero. Pres-
sure from the the air sacs is introduced into the system by setting
pG to some value.

The derivatives of p0, U , and x are descretized as follows:
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The result is then added to the variable in question (along with
the previous value of that variable).

In the case of membrane displacement x, the displacement is
calculated for 2 modes (giving x1 and x2) which are added to pro-
duce the overall displacement of the membrane.

The displacement (x), and the pressure at the base of the tra-
chea (p1), is plotted in Fig. 5 along with the audio output (taken
at the top of the trachea). It is interesting to observe how the pres-
sure (taken at both the top and bottom of the trachea) relates to
the displacement of the membrane. Both pressure waves display a
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pulsation that clearly coincides with the frequency of the oscillat-
ing membrane. When the membrane closes the constriction com-
pletely (i.e., when x = 0), the amplitude of p1 is high and its
frequency is close to the resonance of a closed tube. When the
membrane is open (x > 0), the pressure amplitude decreases and
the frequency increases to the resonance of an open tube.
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Figure 5: Waveforms are comparable to those published by
Fletcher, but use waveguides with lumped losses and a 2nd-order-
error algorithm for numerical integration to achieve stable dis-
cretization at audio sampling rates.

This relationship can also be seen in a sonogram of the pres-
sure wave at the top of the trachea (Fig. 6). The spacing of the
harmonics indicates a fundamental frequency that matches the first
mode of the vibrating membrane. Very strong frequency compo-
nents at 1200Hz and 2200Hz show the contribution of the reso-
nance of an open and closed trachea (the latter being lowered by
the loading of the constriction [3]).
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Figure 6: Sonogram of trachea output.

3. CONCLUSIONS AND FUTURE WORK

The output of the model is the voiced sound produced by the vi-
brating membranes in the syrinx (sounding much like a raven). It
is very rich in harmonics and is not the flute-like tone associated
with the songbird. This again raises the unresolved question of the
actual sound production mechanism, an issue constantly surfac-
ing in the literature. The suggestion that sound is also produced
by vortices set up as air is forced through the constriction created
by the membrane may be erroneous scientifically, but the field of
music is not constrained to scientific reality. The current model
is unable to produce a pure sinusoidal tone; it may therefore be
useful musically to extend the model to provide this functionality.
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