
 Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, September 26-28, 2002

DAFX-211

AUDIO SIGNAL PROCESSING AND OBJECT-ORIENTED SYSTEMS

Victor Lazzarini

Music Technology Laboratory
Department of Music

National University of Ireland, Maynooth
victor.lazzarini@may.ie

ABSTRACT

Object-oriented programming (OOP) has been for many years
now one of the most important programming paradigms used in a
variety of applications. Digital audio signal processing can
benefit largely from this approach for systems development. In
this paper a number of approaches to using object-orientation in
audio processing systems are reviewed. Existing systems of
audio processing are introduced and discussed in detail. The
paper also draws attention to the different OOP techniques
enabled and supported by these systems. Comparative code and
tutorial examples are included, providing an insight into the
development of signal processing applications using objects.

1. INTRODUCTION: OBJECT-ORIENTED
PROGRAMMING

The OOP paradigm is one in a long line of development of
computer languages. Procedural (sometimes called Functional)
programming was the original paradigm, whose formal roots can
be found on Churchill’s λ-calculus[1]. Module decomposition
provided a step towards the organisation of data, breaking the
problem into independent sets, composed of procedures and
related data. The development of the concept of data abstraction
also provided more support for structured programming. This
involves the modelling of real-world problems into user-
definable data types[2].

Object-oriented programming extends the concept of user-
defined types including the possibility of creating hierarchies of
derived data types by inheritance. It also supports the idea of
overridable elements, which is also known as polymorphism.
This enables the development of abstract data objects which can
be specialised into different concrete forms, sharing the same
interface. In audio and music processing development, this
feature is highly desirable. Processes can be modeled to serve as
the basis from which more specific ones can be created,
including some processes not previously anticipated.

Object-oriented languages are normally divided into class-
based and object-based[3]. Class-based languages introduce the
differentiation between the concepts of class (the description of
an object, its ‘kind’) and object (a distinct instance of a class).
The class description involves mainly two elements: attributes
and methods. The former defines what objects of class are
composed of, whereas the latter defines the interface to the class
(and what objects can perform). In some OOP systems, the class
interface includes the concept of messages. These, when sent to
objects, will invoke their associated methods.

Examples of class-based languages are C++[4], Java[5] and
the music processing language PD[6]. Object-based languages do
not support the concept of classes, instead providing constructs
for the creation of individual objects. Originated in the artificial
intelligence community, these languages have not had any
significant impact on audio signal processing development.

Another important aspect of programming with objects is the
idea of encapsulation, whereby access to attributes of an object
is mediated by methods defined within that type. Because it
enables a black-box-style development, where the user is
concerned only with what an object is and what it does, this is
very well suited to audio programming.

A number of programming techniques arise from the OOP
model. Common ones include composition, refinement and
abstraction[7]. Composition is based on the reuse of existing
classes as attributes of a new class. Refinement provides a
derived class with extra support for a number of features not
present in the base class. Abstraction is the technique used for
developing a model (or abstract) class that can serve as the basis
for a number of complex, specialised, classes.

2. AUDIO PROCESSING SYSTEMS

Audio processing systems such as sound compilers (e.g. Csound,
CLM, Nyquist, Cmix) have had a long history of development,
which can be traced back to Max Mathew’s MUSIC series of
programs. Some of these can be seen, in a very loose way, as
object-oriented. For instance, in Csound, a class concept appears
in the form of instrument definitions [8]. Instrument are
instantiated when ‘play a note’ messages are sent to them.
Typically, instruments are composed of smaller objects called
unit generators (UGs), or opcodes (in reference to a syntax
similarity with assembly languages). UGs are instantiated
objects, with their related internal data and two associated
methods. These are invoked automatically by the system, one
when the object is created (a init method) and the other when
signal is processed (a perform method). The provision of at least
one perform method is a typical feature of all audio processing
systems (for obvious reasons). Nevertheless, in many of these
systems, there is not a lot of support for more complex forms of
OOP-style development, or even for a more structured way of
programming.

3. OBJECT-ORIENTED AUDIO PROCESSING

Object-oriented features are supported in a more comprehensive
way by a number of graphic programming languages which

 Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, September 26-28, 2002

DAFX-212

include Max/MSP, JMax and PD, as well as by systems such as
RTcmix and the Synthesis Toolkit. Object-oriented development
of audio signal processing applications is also supported by a
number of public-domain libraries written in OOP languages
such as C++. This paper will be concentrating on three cases:
PD, the RTcmix[9] system and the Sound Object Library[10]. In
addition, the possibilities provided by the Java Sound API[11]
are examined as yet another approach to object-oriented audio
programming.

3.1. PD

Pure Data (PD) is a graphical programming language developed
originally by Miller Puckette. A PD program is edited
graphically as a ‘patch’ of interconnected objects. These feature
any number of inlets and outlets, which are connected with lines
acting as patchcords. Objects are instances of PD classes or
patches, and there is very little, if any, functional difference
between compiled PD classes and patch-defined classes. As a
programming language, PD lacks the more advanced features of
inheritance and polymorphism. Classes cannot be created as
specialised versions of pre-existing ones, but only through
composition and delegation (passing arguments and messages to
its components).

 Figure 1. PD Class attributes

Another important aspect of PD is its support for
customization and extensibility, which is demonstrated by the
possibility of implementation of new classes as part of
dynamically-loadable libraries. Classes are usually created in C,
which has no support for full-fledged OOP development. In this
way, effectively, classes are coded as C-language modules,
which makes for awkward coding in certain situations. Class
attributes are usually wrapped in a data structure, as shown in
fig.1.. It includes a required t_object data field, which makes
the class a subclass of a basic abstract type. The base class
contains attributes relating to how an object is displayed and how
it interacts with other aspects of the system.

 Figure 2. Registering a PD class

Classes, their constructors, destructors and methods are
registered with the system using a special setup function,
executed when a class library is loaded by PD. The convention
used is that one such function is present on each library, with the

library name followed by an underscore as a prefix to
setup()as shown in fig.2. System functions, such as
class_new(), class_addmethod() etc., are used to
register and define the class interface. A pointer to the class is
returned by class_new() to be used by PD to invoke the
constructor, destructors and other methods when a new object is
instantiated.

Figure 3. PD class constructor

An unspecified number of methods to deal with control
messages can be implemented, and, in the case of signal-
processing classes (‘tilde’ classes) one perform method is
required. Using class_addmethod(), these are registered
with the system. Each method is associated with a message, so
that it can be invoked when such message is passed to an object.
The message-passing system is one of the most important OOP
features in this language. A number of standard messages are
predefined, such as ‘float’, which signals the arrival of a single
floating-point number at an inlet. Any message can be defined
for an object, e.g. ‘reset’, followed or not by numerical
arguments

 Figure 4. PD perform method example

A PD class constructor, as usual, allocates memory for the
object data (using the PD system function pd_new()) and

 Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, September 26-28, 2002

DAFX-213

initialises it. It also creates all the inlets/outlets needed by the
object and performs any other data allocation and initialisation
(fig.3). PD class destructors are only needed if any extra memory
was allocated by the constructor (other than by pd_new()). The
‘dsp’ method in PD adds the perform method to a list kept by a
scheduler. The perform method will produce a vector of samples
at the output on each DSP cycle. It can take a number of
input/output vectors (depending on the number of signal
inlets/outlets), a pointer to the object data and the size of the
vectors. A code example is given on fig.4, implementing a
simple mixing of two signal inputs (a class with two inlets and
one outlet, as defined in the constructor, fig.3).

In terms of system architecture, PD has two layers: a Tcl/Tk-
based graphic interface and a processing engine. These two
layers communicate over a socket connection (usually a TCP/IP
stream). Signal-processing developers do not need to concern
themselves with this side of the system. PD classes interface
transparently with the rest of the system, provided that they
follow a number programming guidelines. This tends to put some
constraints on class development. Also the use of the C-
language to implement object-oriented features is very
awkward, especially the constant need to pass pointers to the
class data structure to its methods. Nevertheless, it is possible to
use C++, a genuinely OOP language, to develop PD classes.
This has been done using a C++ wrapper, flext, developed by
Thomas Grill [12].

3.2. RTcmix

RTcmix is a version of the original Cmix system developed at
Columbia University. It is basically a C++ library of sound-
processing ‘instruments’, which can be driven by a score parser
(Minc, originally developed for Cmix) or, similarly to PD, by a
TCP/IP socket connection. The system provides a scheduler that
calls the signal-processing method of an instrument when it is
invoked by Minc or the socket connection. Any interface can be
developed to interact with a RTcmix instrument using TCP/IP.

 Figure 5. RTcmix instrument class example

Instruments can be added to the library using the C++
language. An RTcmix instrument is a class which inherits a basic
set of attributes and methods from a base class (Fig.5). Two
basic methods are overridable and need to be implemented in the
derived class: an initialisation method (which gets parameters
from the parser or socket, init()) and, as in PD, a ‘perform’
method (which generates audio, run()). The base class also
provides methods to output the signal vector (rtaddout() and
addout()) and other utilities. It also contains all general
attributes of an instrument, such as number of input/output
channels, sampling rate etc..

 Figure 6. RTcmix init() method

The init() method takes as arguments a number of input
numeric fields from the score (pfields), in the form of an array of
floats and its size (fig.6). Its task is fourfold: to read, check and
store pfields; set input/output bus pointers; set any function
tables and other instrument-specific elements; and, finally, set
the control rate counter, which is used to update slow-varying
parameters, such as envelope amplitude and sub-audio
modulating frequency. The init() method is called by the
scheduler when the instrument is to be initialised.

 Figure 7. RTcmix run() method

The run() method is the business end of an instrument
class. It is called by the scheduler every time-slice in which the
instrument should run. It process a vector full of input frames
into the output. The instrument developer needs to take care of

 Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, September 26-28, 2002

DAFX-214

any memory allocation that is needed for input sound buffering
etc. . Also, there is a requirement that the base class run()
method is called at the top of the function. Typically, here the
developer will (in similar fashion to PD) provide a loop where
the vector samples are processed. For efficiency, inside the loop,
control rate values can be updated less often, using the control
rate counter. As seen in figure 7, the perform method for RTcmix
is very straightforward, if compared to PD, especially in terms of
how to obtain the input signal and how to write to output. In
addition to this, any method can be included in an instrument to
instantiate independent socket connections for message
processing. In general, as opposed to PD, RTcmix tends to put
very few constraints on how instruments should be designed, so
that a range of OOP techniques supported by the C++ language
can be employed in their development.

3.3. The Sound Object Library

The Sound Object (SndObj) Library is an object-oriented cross-
platform audio signal processing framework. As opposed to the
previous two cases, it is not an audio processing system, but a set
of programming tools for software development. As such, it
supports all OOP techniques described above, enabling fast
development of standalone applications, as well as the
development of new signal processing algorithms. There are no
constraints imposed on the developer, no need for
implementation of any special method, or any type of identifier
registration. Even if a developer does not provide a specialised
‘perform’ method (overriding the base class DoProcess()), a
newly developed class can still be compiled and used (but of
course with little functionality).

 Figure 8. Using the SndObj library

The library uses some concepts of OOP to its full advantage.
For instance, inheritance and polymorphism provide ways of
creating a whole tree of derived classes, which can share the
same interface, but effectively implement different signal
processing algorithms. New classes can be derived from existing
ones, maximizing code re-use. In this case, a new class will
typically override the ‘perform’ method of its base class, but can
use any of the other facilities provided by it. Several classes,
dealing with some basic signal processing families (e.g., filters,
delay lines, etc.), are present in the library, from which
specialised versions can be created.

 Figure 9. SndObj-derived class example

Objects created from SndObj classes have a true OOP
behaviour, as shown in figure 8. A SndObj object is defined by
its internal state (sampling rate, vector size, inputs taken etc.)
and what kind of processing it does. Its output is available to any
other object of the family. Apart from producing vectors of
samples when the DoProcess() method is invoked, using
operator overloading, objects can be added, subtracted, and
multiplied together or by numeric values. Shift operators can be
used to input/output signal to SndIO classes (which deal with all
aspects of input/output). On a higher-level, connections are
created between objects, rather than by using signal patchcords
or buffers.

 Figure 10. ClassExample implementation

In terms of applications, the SndObj library has been
extensively used in the development of stand-alone sound
processing software. It can be also used to provide high-quality
audio to any application. The library can also be integrated with
other music processing systems. For instance, it has been used to
implement new PD classes, such as syncgrain~, by Frank

 Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, September 26-28, 2002

DAFX-215

Barknecht[13]. Developed employing the homonymous SndObj
class, it implements sampled-sound granular resynthesis.

One of the most important aspects of the library is its support
for class development. Classes can be derived from any of the
available ones, depending on the type of processing and the
types of services provided by a base class. For instance, for the
development of delay-based processes, it might be useful to
derive a new class from either DelayLine or one of its derived
classes. The simplest way of creating a new class is to specialise
the base class, SndObj. In figure 9, the interface for a class that
does exactly the same task as the PD example is shown. All is
needed is to add the code for the constructor and the perform
method, DoProcess(). The simplicity of the implementation
is clear (fig.10).

3.4. Object-oriented audio in Java

Java is an object-oriented language in certain ways very
similar to C++. One of the main differences is that, being an
interpreted language, it is not as efficient for number-crunching
as compiled binaries. Usually, Java tends to be used in the
development of interfaces for systems (e.g. for RTcmix, or for a
SndObj application). Nevertheless, the latest versions of Java
have been much optimised and it is feasible to envisage the
development of audio processing applications based on this
language.

The introduction of the Java Sound API and the package
javax.sound.sampled has provided some possibilities in the area.
Currently, it provides Java classes and interfaces to access audio
devices and soundfiles for reading and writing, as well as
providing simple processing controls (e.g. pan, gain,
reverberation etc.; implementation dependent). The audio
input/output side of the API is based around the concepts of
Mixer and Lines. The former are representations of audio
devices, which can receive/produce formatted signal streams,
and the later patchcords or pipelines in and out of Mixers and
other objects (source and target lines). The Line interface
hierarchy, which includes Mixer and other types is shown on
fig.11.

 Figure 11. Java Sound Line interface hierarchy

The functionality of the base interface includes methods for
opening/closing lines, setting up controls and generating events
(related to the status of the line). The subinterface Port
describes a line relating to a physical input/output (mic, speaker,
line, etc.), whereas Mixer, as mentioned before, describes an
audio device. DataLine is a subinterface that extends Line to
give it extra features, such as an associated data format, a signal

buffer, start/stop streaming controls etc.. TargetDataLine
and SourceDataLine are specialised versions used for sound
input and output, respectively. They include methods for
reading/writing the object buffer. Clip is a simplified version of
SourceDataLine which stores a single signal vector intended
for output.
 The Java Sound API seems to provide comprehensive
support for audio input/output, as well as for soundfile
operations. It is possible, therefore, to develop signal processing
classes, in similar fashion to the SndObj library to provide OOP
audio manipulation resources in Java. Other possibilities involve
the use of dynamically loadable libraries (‘native methods’ in
Java) to perform the more intensive number crunching aspects of
a class (the perform method, for instance). A Java-based music
processing object-oriented system is a definite possibility, using
one of the strategies described above.

On an implementation level, particularly important is the
provision of what is called a service provider interface (SPI)
which would enable extensions to the basic services provided by
the API. In general, it seems to be designed to implement file
reading, writing and conversion to/from new formats, but there is
also support for implementing new mixer interfaces An audio
processing engine could possibly be designed as an
implementation of such Java interface. This would enable the
provision of signal processing algorithms which can be ‘plugged-
in’ to an existing implementation of the API. The advantage,
from a programmer’s point of view, is that such services could
be transparently integrated.

4. CONCLUSION

Object-oriented development can be very useful for audio
processing applications and systems. Examples can be found on
all levels of programming, from graphic music processing
languages such as PD, to software libraries in C++ or Java.
Although the different systems discussed in this paper vary in
level of complexity, they share some important aspects which
make OOP an important systems development paradigm. It was
also shown that, the more a system adheres to object-orientation,
the more straightforward the programming task can be. The
comparison between PD class development and the other two
C++ based systems, RTcmix and the SndObj library, clearly
shows it. By extension, it is very opportune to note that Java, as
thoroughly object-oriented language, is starting to offer very real
possibilities for audio processing, as an alternative to C/C++-
based software development.

5. REFERENCES

[1] Bertrand Meyer, Introduction to the Theory of
Programming Languages, Prentice Hall, Englewood Cliffs,
1990.

[2] Carlo Ghezi, Mehdi Javayeri, Programming Language
Concepts, J Wiley & Sons, New York, second edition,
1987.

[3] Martin Abadi, Luca Cardelli, A Theory of Objects, Springer-
Verlag, New York, 1996.

[4] Bjarne Stroustrop, The C++ Programming Language,
Addison-Wesley, New York, second edition, 1991.

 Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, September 26-28, 2002

DAFX-216

[5] Ken Arnold, James Gosling, The Java Programming
Language, Addison-Wesley, New York, 1996.

[6] Puckette, M., “Pure Data”, in Proc. International Computer
Music Conference, San Francisco, pp. 269-272, 1996.

[7] Pope, S., “Machine Tongues XI: Object Oriented Design”,
in S. Pope (Ed.), The Well Tempered Object, MIT Press,
Cambridge, Mass, pp.32-45, 1991.

[8] Ffitch, John, “What Happens When You Run Csound”, in
R. Boulanger (Ed.), The Csound Book. MIT Press,
Cambridge, Mass, pp.99-121, 2000.

[9] Garton, B., Topper, D., “RTCmix Using CMIX in
Realtime”,
http://www.music.columbia.edu/cmix/rtrealtime.html.

[10] Lazzarini, V,“The Sound Object Library”, Organised Sound
5 (1), Cambridge: Cambridge Univ. Press., 2000, pp 35-49.

[11] http://java.sun.com/products/java-media/sound
[12] Grill, Thomas. “Flext, C++ layer for MaxMSP and pd

externals”.
 http://www.parasitaere-kapazitaeten.net/Pd/ext/flext/
[13] Barknecht, Frank. “Syncgrain~”. http://footils.org/

