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ABSTRACT

A method for extrapolating discrete audio signals is described.
The theory of extrapolation is studied and some applications are
presented and demonstrated. The extrapolation method is fast and
capable of extrapolating several thousand samples of CD-quality
audio signals. The extrapolation is applied in practice to enhance
the spectral resolution in short-time fast Fourier transform based
methods. It is also applied to eliminate impulsive noise bursts and
to recover missing signal sections.

1. INTRODUCTION

The extrapolation of a discrete signal section means calculation of
new previously unknown signal samples extending the given sig-
nal. The conventional method for data series extrapolation is to fit
the data into an assumed functional form and to find the best fitted
parameters of the analytical equation. When the analytical equa-
tion is obtained, the data values outside the range of the given data
series can be calculated using the analytical equation. With audio
signal the exact functional form of the signal is hardly ever known.
In the proposed method the extrapolated data values are calculated
directly from the given data and no functional form nor other in-
formation about the data structure is required, which makes the
method well suited for audio signal extrapolation. Other methods
for discrete signal extrapolation can be found in e.g. [1]-[6].

The discrete audio signal extrapolation method presented in
this paper was introduced in paper [7]. In this paper the theory of
the extrapolation is derived with an alternative approach starting
from the conventional linear prediction. Some applications for the
audio signal extrapolation are presented to demonstrate the effec-
tiveness of the presented method.

The remaining text is organized as follows. In Section 2, the
linear prediction is briefly reviewed. In Section 3, the forward ex-
trapolation equation is presented. In Section 4, theoretical aspects
of extrapolating audio signals are studied. Applications for the ex-
trapolation are presented in Section 5, and conclusions are drawn
in Section 6.

2. LINEAR PREDICTION

In conventional Linear Prediction (LP) the nth signal sample xn

is approximated as a combination of p previous samples and com-
puted using an finite impulse response (FIR) filter:

x̃n =

p
∑

i=1

aixn−i, (1)

where ai are the prediction coefficients and p is the model order.
The error between the predicted sample x̃n and the actual sample
xn is given by

en = xn − x̃n = xn −

p
∑

i=1

aixn−i (2)

and is called the residual. The unknown filter coefficients ai are
found by minimizing the square of the prediction error within a
given signal section. The prediction filter is presented in the z-
domain as

P (z) =

p
∑

i=1

aiz
−i, (3)

and the filter A(z) = 1−P (z) is used to calculate the residual en

from the signal xn. If the residual en obtained by filtering xn with
the filter A(z) is used as input to a infinite impulse response (IIR)
filter given by

H(z) =
1

1 − P (z)
, (4)

the signal xn will be ideally recovered. Thus, the filter H(z) is
called the synthesis filter and the filter A(z) = 1/H(z) the inverse
filter. The frequency response of the all pole-filter H(z) is used to
model matches to the local maxima of the signal spectrum X(f).

This gives rise to Linear Predictive Coding (LPC) which is
an effective method for compression of speech and audio signals.
In the compression applications relatively low model orders are
used (p = 8 − 12 for speech signals [8] and p = 30 − 100 for
audio signals [9]). This is because the aim in LPC is to model the
strongest local maxima in the signal spectrum.

3. EXTRAPOLATION

3.1. Extrapolation as convolution

The extrapolation of a finite length signal vector x = [x1, x2, x3,
..., xN ] means calculation of new previously unknown samples
[xN+1, xN+2...] (forward) or [..., x−2, x−1, x0] (backward) to the
discrete signal vector x. If we assume that there exists a set of
prediction filter coefficients h = [h1, ..., hM ] that would linearly
predict any sample in a given signal perfectly (from M previous
samples) resulting in zero prediction error (en = 0), Eq. (2) re-
duces to the form

xn =
M
∑

i=1

hixn−i. (5)

If we have at least M known samples in the given signal vector
x (i.e. N ≥ M ), we can generate the first forward extrapolated
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sample xN+1 by the above equation resulting in a prolonged sig-
nal vector [x1, x2, x3, ..., xN , xN+1]. Now the last M samples of
this prolonged signal can be used to generate the second forward
extrapolated sample xN+2 using Eq. (5) again. By successively
using this procedure we can generate an unlimited amount of new
extrapolated samples to the given signal x.

The extrapolation Eq. (5) can be rewritten in general convolu-
tion form

xn = hn ∗ xn =

∞
∑

i=−∞

hixn−i, (6)

where hi = 0 when i > M and i < 1. This means that the
impulse response for extrapolation must be causal and it must also
satisfy the important condition h0 = 0.

3.2. Impulse response and transfer function

To obtain some theoretical information about which type of signals
can be extrapolated, it is essential to examine the impulse response
in the frequency domain (i.e. the transfer function).

If we rewrite the convolution Eq. (6) in continuous form where
a continuous signal x(t) is convolved by an impulse response h(t)
so that it is not changed

x(t) = h(t) ∗ x(t), (7)

it can be written in frequency domain using the convolution theo-
rem of the Fourier transforms as:

X(f) = H(f)X(f), (8)

where the transfer function must obey the condition

H(f) =

{

1 and real, X(f) 6= 0
arbitrary, X(f) = 0.

(9)

A trivial solution for a transfer function that satisfies the condition
of Eq. (9) is a real constant value of unity at all f . The impulse re-
sponse in this case is Dirac’s delta function h(t) = δ(t). However,
this cannot be used for extrapolation since according to Eq. (6) the
impulse response must be causal and zero at t = 0. According to
these requirements the transfer function H(f) is complex valued
and it is a Hermitian function i.e. H(f) = H∗(−f). Furthermore,
the real and imaginary parts of H(f) are a Hilbert transform pair.
An analytical function can only be forced to a certain value in dis-
crete points, therefore the spectrum X(f) of the infinitely long
signal can consist only of sharp lines (i.e. Dirac’s delta functions).

The above considerations can be summarized giving the re-
quirements for the signals that can be extrapolated: If the func-
tional form of the given signal section has a theoretical spectrum
consisting only of infinitely sharp lines, the signal section can be
extrapolated perfectly using a finite length impulse response.1 An
example of such a function is the cosine-function whose spectrum
is given by

F{cos(2πf0t)} =
1

2
δ(f − f0) +

1

2
δ(f + f0). (10)

where F{} denotes continuous Fourier transform.

1It is assumed here that the signal section has at least the same length
than the required impulse response for perfect extrapolation.

4. EXTRAPOLATION OF AUDIO SIGNALS

A short stationary audio signal section can be mathematically ap-
proximated by a sum of cosine waves with the frequencies fi and
phases φi multiplied by an amplitude envelope functions Ai(t)
given by

x(t) =
∑

i

Ai(t) cos(2πfit + φi), fi ≥ 0. (11)

The amplitude envelope functions are slowly varying for relatively
stationary signal sections, but for transient sounds, the amplitude
envelopes have short rise and decay times and have a strong con-
tribution to the waveform. The cosine function can be further de-
composed into superposition of complex waves called ’phasors’
according to Euler’s formula

cos ωt =
eiωt + e−iωt

2
, (12)

where ω is the angular frequency. The spectrum of a single phasor
is Dirac’s delta function and one single impulse response coeffi-
cient is required to extrapolate a phasor

eiωn∆t = h1e
iω(n−1)∆t, where h1 = eiω∆t. (13)

Two real valued coefficients are required to extrapolate a cosine
wave, which is a sum of two phasors:

cos(ωn∆t) = h1
eiω(n−1)∆t + e−iω(n−1)∆t

2

+h2
eiω(n−2)∆t + e−iω(n−2)∆t

2
,

(14)

where the impulse response coefficients are h1 = 2 cos(ω∆t) and
h2 = −1.
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Figure 1: Real and imaginary parts of the transfer function, and
the amplitude spectrum of a single cosine wave are presented in
the upper graph. The extrapolation is demonstrated in the lower
graph.

The real and imaginary parts of the transfer function for ex-
trapolation of a single cosine wave are demonstrated in Fig. 1. In
the upper graph, the real and imaginary part of the transfer function
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Figure 2: The transfer function for the sum of two cosine waves in
the upper graph. The extrapolation is demonstrated in the lower
graph.

are plotted along with the amplitude spectrum of the (truncated)
cosine wave. The dotted line indicates the value 1. The real part
of the transfer function has the value of one and the imaginary part
has the value of zero exactly at the locations of the positive and
negative frequencies. In the lower graph, a section of the cosine
wave is extrapolated perfectly using an impulse response with two
coefficients.

The sum of two cosine waves with different frequencies (and
constant amplitude envelopes) requires four impulse response co-
efficients for perfect extrapolation. This is demonstrated in Fig. 2
where the value of the transfer function is exactly one and real at
the locations of the four spectral peaks in the amplitude spectrum
of the signal.

In the case of a time-varying cosine wave, the perfect extrap-
olation is possible only if the amplitude envelope is a predictable
function alone e.g. exponential or polynomial. For perfect extrap-
olation of a cosine wave with a non-constant amplitude envelope,
a longer impulse response is usually required. An interesting case
is the exponential amplitude envelope. An exponent function re-
quires only one impulse response coefficient for perfect extrapola-
tion and a cosine function multiplied by an exponential amplitude
envelope requires only two coefficients which is the same amount
than with a constant amplitude. The extrapolation of a cosine wave
with exponential amplitude envelope is demonstrated in Fig. 3.
(The broadening of the spectral lines results from the truncation
of the signal.)

4.1. Model order

The number of impulse response coefficients required to perfectly
extrapolate each time varying cosine wave in the audio signal can
be observed by decomposing the cosine wave in the exponential
form

x(t) = A(t) cos(ωt) =
A(t)

2
eiωt +

A(t)

2
e−iωt. (15)

If m is the number of coefficients required to perfectly extrapo-
late the amplitude envelope function A(t), also A(t) multiplied by
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Figure 3: The exponentially growing cosine wave can be perfectly
extrapolated using the same amount of impulse response coeffi-
cients as for the same cosine wave with constant amplitude enve-
lope.

an exponent function can be perfectly extrapolated with m coef-
ficients. Each component in the right hand side sum in Eq. (15)
requires m coefficients which means that a cosine wave with a
time varying amplitude envelope requires 2m coefficients for per-
fect extrapolation. A polynomial function requires q + 1 impulse
response coefficients for perfect extrapolation, where q is the or-
der of the polynomial. Therefore, e.g. a cosine wave with a third
degree polynomial decay requires 8 coefficients for perfect extra-
polation.

General audio signals contain a large amount of frequencies
and the time varying nature of the frequencies require higher model
order than constant amplitude envelope. This implies a very large
model order for good extrapolation results. Experiments with mu-
sic signals in [7] and [10] suggest that an appropriate general num-
ber for the impulse response coefficients is 1000.

4.2. Calculation of the impulse response coefficients

A straightforward method for calculating the M impulse response
coefficients is to apply Eq. (5) to a known section of the signal
with N samples generating a group of M equations. This group
of equations is given in matrix form as:

Xh = x, (16)

where h = [h1, h2, ..., hM ]T , x = [xM+1, xM+2, ..., x2M ]T , and
2M = N . The matrix X is composed of shifted signal samples

X =











xM xM−1 xM−2 . . . x1

xM+1 xM xM−1 . . . x2

...
...

...
...

x2M−1 x2M−2 x2M−3 . . . xM











. (17)

However, the exact analytical solution for h exists only for noise-
less theoretical signals. For measured noisy signals, such as audio
signals, an iterative approach should be used.

The coefficients can be found by calculating the prediction
error coefficients a = [1, a1, ..., ap] by LPC analysis and con-
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Figure 4: The original 1024 samples signal frame (bottom) con-
taining playing of an electrical guitar is extrapolated 7680 sam-
ples in both directions (top).

vert them into impulse response coefficients using the relation:
h = [h1, ..., hM ] = [−a1,−a2, ...,−ap].

Several methods exist for finding the prediction error coeffi-
cients. However, in practical experiments the Burg method [11]
[12][13] gives good and stable results for the purpose of audio sig-
nal extrapolation.

4.3. Information distribution

When extrapolated samples are generated by convolution some in-
formation is drawn from the known signal and the rest of the infor-
mation comes from the impulse response coefficients. The impulse
response coefficients bear mainly the information about the fre-
quencies of the sinusoids and their amplitude envelopes. The am-
plitude and phase information of the extrapolated sinusoids comes
from the known signal.

4.4. An IIR filter implementation of the extrapolation

A general infinite impulse response (IIR) filter is defined by equa-
tion [14]

p
∑

i=0

ai yn−i =

q
∑

i=0

bi xn−i, (18)

where ai and bi are the filter coefficients, p + 1 and q + 1 are the
lengths of the filter coefficient vectors, xn are the input samples
and yn are the output samples of the IIR filter. Assuming zero
input to the filter (i.e. xn = 0, ∀n) the output yn can be solved
from Eq. (18):

yn = −
1

a0

p
∑

i=1

ai yn−i. (19)

This equation is essentially the same as Eq. (5). Therefore, the
extrapolation can be implemented as an IIR filter with coefficients

a0 = 1
ai = −hi, i > 0
bi = arbitrary,

(20)
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Figure 5: The high resolution spectrum (top) with the resolution
enhanced by a factor of 16 compared to the original spectrum (bot-
tom).

where hi are the impulse response coefficients and the input is a
vector of zeros. The most sensible choices for q and bi are

q = 0, b0 = 1 (21)

leading into a difference equation given by

yn =

p
∑

i=1

hiyn−i + xn. (22)

The procedure for the extrapolation of W samples is:

• Calculate the impulse response coefficients h1, h2, ..., hM .

• Initialize the filter with M past known samples just before
the section to be extrapolated.

• Feed a zero vector of length W as an input to the filter.

The output of the filter will be the W extrapolated samples.
One possible implementation for the extrapolation using

MatlabTM is given by

a = arburg(y,M);
Z = filtic(1,a,y(end-(0:(M-1))));
ye = filter(1,a,zeros(1,W),Z);

where y is a vector containing the known signal section, M is the
length of the impulse response, and the vector ye contains the W
extrapolated samples.

5. APPLICATIONS

5.1. Spectral resolution enhancement

In FFT based signal processing methods the signal is processed
in short consecutive segments (frames) which are assumed to be
stationary. To avoid sudden changes at the frame boundaries the
frames can be overlapped. In the analysis stage FFT is applied
to each signal frame to obtain the spectrum. This process has be-
come known as the short-time Fourier transform (STFT). In the
synthesis stage the frames are windowed and recombined by an
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Figure 6: The processing stages of one signal frame in a frame-
by-frame FFT based signal processing system with resolution en-
hancement.

overlap and add procedure. Audio signals contain fast transients
and on the other hand long slowly varying sections i.e. the length
of the short-time stationarity varies significantly as a function of
time. To ensure the short-time stationarity assumption the sig-
nal should be processed in relatively short frames. On the other
hand, high frequency resolution is required for high quality, and
longer frames yield better frequency resolution. While the small
frame size yields good time resolution, it also deteriorates the fre-
quency resolution and vice versa. Traditionally, this phenomenon
is known as the tradeoff between spectral and temporal resolution,
which is a well-known problem in frame-by-frame FFT based au-
dio signal processing techniques.

In the proposed resolution enhancement method, each station-
ary audio signal frame is prolonged by extrapolating in both di-
rections. The prolonged signal frame is transformed into the spec-
tral domain by using FFT, where the processing is applied with
increased spectral resolution. The processed high resolution spec-
trum is inverse Fourier transformed back into the signal domain
and the extrapolated (and processed) sections are discarded by
truncation. This leaves a processed signal frame with the original
frame size. However, frequency domain processing was applied
with higher resolution yielding better accuracy.

The proposed spectral resolution enhancement is illustrated in
Figs. 4 and 5 by using a real-life audio signal from an electric
guitar. The size of the original frame is 1024 samples and it is
modeled by calculating 800 impulse response coefficients using
the Burg method. The signal section is extrapolated in both direc-

DAMAGED AUDIO

calculate impulse response h′ calculate impulse response h′′

FORWARD EXTRAPOLATION
↓

x′

BACKWARD EXTRAPOLATION
↓

x′′

CROSS−FADE
↓

x
∧

w  1−w

Figure 7: Reconstruction of an audio signal section damaged by
an impulsive noise burst. The signal contains Jazz music.

tions (7680 samples) resulting in a frame size of 16384 samples
(see Fig. 4). The corresponding spectra of the original frame and
the prolonged frame are presented in Fig. 5.

The processing stages of an arbitrarily selected signal frame in
a frame-by-frame FFT based signal processing system with reso-
lution enhancement is illustrated in Fig. 6. In this schematic figure
the given signal frame is first prolonged by extrapolating in both
directions. An analysis window is applied to the prolonged signal
frame prior to FFT. (The half tone spectra merely illustrate the ef-
fect of the processing in frequency domain and do not represent
actual processing.) After the desired spectral domain processing
(e.g. spectral subtraction for noise reduction) the spectrum is in-
verse Fourier transformed and the analysis windowing is compen-
sated. The extrapolated (and processed) sections are discarded by
truncation resulting in a processed signal frame with the original
frame size. Finally, overlap and add procedure is applied to con-
struct the processed signal.

5.2. Elimination of impulsive noise

In audio signals impulsive type of degradation mainly originated
from physical damages to the storage media is commonly encoun-
tered. A common example is a vinyl recording with scratches on
the surface resulting in disturbing impulsive ’clicks’ added to the
original source.

Extrapolation can be successfully used to reconstruct an audio
signal section damaged by an impulsive noise burst. The damaged
signal section is replaced by a weighted combination of forward
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and backward extrapolated signals given by

x̂n = wnx′

n + (1 − wn)x′′

n, (23)

where x′

n and x′′

n are the forward and backward extrapolated sig-
nal samples, respectively and wn is the cross-fade function. The
elimination of an impulsive disturbance by combining forward and
backward extrapolation is demonstrated in Fig. 7.

5.3. Reconstruction of missing signal segment

The reconstruction of a data dropout is demonstrated in Fig. 8
by zeroing a 3000 samples section of an audio signal containing
the playing of an acoustic guitar and reconstructing the missing
samples by combining forward and backward extrapolated signals.
The error of the extrapolation is visualized in the lowest graph in
Fig. 8 by subtracting the reconstructed signal from the original sig-
nal.
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Figure 8: A 3000 samples section of an audio signal (top) is ze-
roed (second graph) and reconstructed by combining forward and
backward extrapolated signals (third graph). The error (original-
reconstructed) is visualized in the lowest graph.

6. CONCLUSIONS

A discrete signal extrapolation method is presented and theoretical
observations are carried out. A mathematical model consisting of a
sum of time varying cosine waves is assumed for audio signal and
theory for extrapolating time varying cosine waves is discussed.
Some applications for extrapolation in audio signal processing are
presented including spectral resolution enhancement in frame-by-
frame FFT based signal processing systems and reconstruction of
damaged and missing audio signal sections by combining forward
and backward extrapolation. The use of the proposed extrapolation
method allows reconstruction of extremely long missing or dam-
aged sections with non- or barely audible side-effects. Due to the
low computational complexity, the extrapolation technique can be
implemented into real-time audio restoration applications.
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